metadata
datasets: open-r1/openr1-220k-math
library_name: transformers
model_name: OpenR1-Qwen-7B
tags:
- generated_from_trainer
- trl
- sft
- mlx
licence: license
license: apache-2.0
base_model: open-r1/OpenR1-Qwen-7B
mlx-community/OpenR1-Qwen-7B-4bit
The Model mlx-community/OpenR1-Qwen-7B-4bit was converted to MLX format from open-r1/OpenR1-Qwen-7B using mlx-lm version 0.21.4.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/OpenR1-Qwen-7B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)