bobig's picture
Update README.md
fe25c39 verified
---
license: apache-2.0
tags:
- mlx
base_model: FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview
---
# bobig/FuseO1-R1-QwQ-SkyT1-Flash-32B-Q8
Quant made with the latest mlx-lm
This model is very good, my 2nd favorite for unpluged coding on Macs.
SpecDec works with this draft model [DeepScaleR-1.5B-Preview-Q8](https://huggingface.co/mlx-community/DeepScaleR-1.5B-Preview-Q8)
but the acceptance rate is only 61%.
The Model [bobig/FuseO1-R1-QwQ-SkyT1-Flash-32B-Q8](https://huggingface.co/bobig/FuseO1-R1-QwQ-SkyT1-Flash-32B-Q8) was
converted to MLX format from [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview)
using mlx-lm version **0.21.4**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("bobig/FuseO1-R1-QwQ-SkyT1-Flash-32B-Q8")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```