|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- stingning/ultrachat |
|
- TIGER-Lab/MathInstruct |
|
- ise-uiuc/Magicoder-Evol-Instruct-110K |
|
- OpenAssistant/oasst2 |
|
- teknium/openhermes |
|
- bigcode/commitpackft |
|
- Open-Orca/SlimOrca |
|
- ise-uiuc/Magicoder-OSS-Instruct-75K |
|
language: |
|
- en |
|
library_name: transformers |
|
base_model: |
|
- mllmTeam/PhoneLM-0.5B |
|
--- |
|
PhoneLM-0.5B-Instruct is a 0.5 billion parameter decoder-only language model. |
|
|
|
## Usage |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_name = 'mllmTeam/PhoneLM-0.5B-Instruct' |
|
question = "Hello, who are you?" |
|
prompt = [{"role": "user", "content": question}] |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='cuda', trust_remote_code=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True) |
|
|
|
inp = tokenizer(input_text, return_tensors="pt") |
|
inp = {k: v.to('cuda') for k, v in inp.items()} |
|
out = model.generate(**inp, |
|
max_length=256, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.7 |
|
) |
|
text = tokenizer.decode(out[0], skip_special_tokens=True) |
|
print(text) |
|
``` |
|
|
|
|
|
## Model Details |
|
|
|
* **Developed by**: mllmTeam |
|
* **Model type**: `PhoneLM 0.5B` models are auto-regressive language models based on the transformer decoder architecture. |
|
* **Language(s)**: English |
|
* **Paper**: [PhoneLM Technical Report]() |
|
* **Library**: [PhoneLM](https://github.com/UbiquitousLearning/PhoneLM) |
|
|
|
### Model Architecture |
|
|
|
The model is a decoder-only transformer architecture with the following modifications: |
|
|
|
| Hidden Size | Layers | Heads | Sequence Length | |
|
|-------------|--------|-------|-----------------| |
|
| 1024 | 24 | 16 | 2048 | |
|
|
|
* **Position Embeddings**: Rotary Position Embeddings ([Su et al., 2021](https://arxiv.org/abs/2104.09864)) applied to the first 25% of head embedding dimensions for improved throughput following [Black et al. (2022)](https://arxiv.org/pdf/2204.06745.pdf). PhoneLM quantized the sin and cos values in Rotary Position Embeddings to 8-bit integers. |
|
* **Normalization**: LayerNorm ([Ba et al., 2016](https://arxiv.org/abs/1607.06450)) with learned bias terms as opposed to RMSNorm ([Zhang & Sennrich, 2019](https://arxiv.org/abs/1910.07467)). |
|
* **Biases**: We remove all bias terms from the feed-forward networks and multi-head self-attention layers, except for the biases of the query, key, and value projections ([Bai et al., 2023](https://arxiv.org/abs/2309.16609)). |
|
* **ReLU Activation Function**: ReLU([Glorot et al., 2011](https://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf)) activation functions are adopted in feed-forward networks. |
|
* **Tokenizer**: We use the SmolLM([Allal et al., 2024](https://huggingface.co/blog/smollm))'s tokenizer with a vocabulary size of 49,152. |
|
|
|
## License |
|
* This repository is released under the [Apache-2.0](https://huggingface.co/mllmTeam/PhoneLM-0.5B-Instruct/blob/main/LICENSE) License.、 |
|
|
|
## Citation |
|
``` |
|
@misc{yi2024phonelmanefficientcapablesmall, |
|
title={PhoneLM:an Efficient and Capable Small Language Model Family through Principled Pre-training}, |
|
author={Rongjie Yi and Xiang Li and Weikai Xie and Zhenyan Lu and Chenghua Wang and Ao Zhou and Shangguang Wang and Xiwen Zhang and Mengwei Xu}, |
|
year={2024}, |
|
eprint={2411.05046}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2411.05046}, |
|
} |
|
``` |