metadata
library_name: transformers
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: >-
hp_ablations_grid_mistral_bsz2048_lr2e-6_scheduler-cosine-warmup0.15-minlr5e-7
results: []
hp_ablations_grid_mistral_bsz2048_lr2e-6_scheduler-cosine-warmup0.15-minlr5e-7
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the mlfoundations-dev/oh-dcft-v3-llama3.1-nemotron-70b_shareGPT_format dataset. It achieves the following results on the evaluation set:
- Loss: 0.0602
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 32
- gradient_accumulation_steps: 8
- total_train_batch_size: 2048
- total_eval_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_ratio: 0.15
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5294 | 1.0 | 168 | 0.0658 |
0.4791 | 2.0 | 336 | 0.0617 |
0.4473 | 3.0 | 504 | 0.0602 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.3.0
- Datasets 3.1.0
- Tokenizers 0.20.3