|
--- |
|
license: other |
|
tags: |
|
- dpo |
|
datasets: |
|
- mlabonne/orpo-dpo-mix-40k |
|
model-index: |
|
- name: Daredevil-8B-abliterated-dpomix |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 69.28 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 85.05 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 69.1 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 60.0 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 78.69 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 71.8 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix |
|
name: Open LLM Leaderboard |
|
--- |
|
# NeuralDaredevil-8B-abliterated |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/gFEhcIDSKa3AWpkNfH91q.jpeg) |
|
|
|
This is a DPO fine-tune of [mlabonne/Daredevil-8-abliterated](https://huggingface.co/mlabonne/Daredevil-8B-abliterated), trained on one epoch of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k). |
|
The DPO fine-tuning successfully recovers the performance loss due to the abliteration process, making it an excellent uncensored model. |
|
|
|
## π Applications |
|
|
|
NeuralDaredevil-8B-abliterated performs better than the Instruct model on my tests. |
|
|
|
You can use it for any application that doesn't require alignment, like role-playing. Tested on LM Studio using the "Llama 3" preset. |
|
|
|
## β‘ Quantization |
|
|
|
* **GGUF**: https://huggingface.co/mlabonne/NeuralDaredevil-8B-abliterated-GGUF |
|
|
|
## π Evaluation |
|
|
|
### Open LLM Leaderboard |
|
|
|
NeuralDaredevil-8B is the best-performing uncensored 8B model on the Open LLM Leaderboard (MMLU score). |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/HQtd51mJfVRhJ0lJFLceM.png) |
|
|
|
### Nous |
|
|
|
Evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval). See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard). |
|
|
|
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench | |
|
|---|---:|---:|---:|---:|---:| |
|
| [**mlabonne/NeuralDaredevil-8B-abliterated**](https://huggingface.co/mlabonne/NeuralDaredevil-8B-abliterated) [π](https://gist.github.com/mlabonne/ae0bf16936cef900b72964b33c99edbc) | **55.87** | **43.73** | **73.6** | **59.36** | **46.8** | |
|
| [mlabonne/Daredevil-8B](https://huggingface.co/mlabonne/Daredevil-8B) [π](https://gist.github.com/mlabonne/080f9c5f153ea57a7ab7d932cf896f21) | 55.87 | 44.13 | 73.52 | 59.05 | 46.77 | |
|
| [mlabonne/Daredevil-8B-abliterated](https://huggingface.co/mlabonne/Daredevil-8B-abliterated) [π](https://gist.github.com/mlabonne/32cdd8460804662c856bcb2a20acd49e) | 55.06 | 43.29 | 73.33 | 57.47 | 46.17 | |
|
| [NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B) [π](https://gist.github.com/mlabonne/5df2a3051dd6eb3368a77b684635dc05) | 54.28 | 43.9 | 72.62 | 56.36 | 44.23 | |
|
| [openchat/openchat-3.6-8b-20240522](https://huggingface.co/openchat/openchat-3.6-8b-20240522) [π](https://gist.github.com/mlabonne/95eef8e8d26b7b17910dcb78e1c95f4a) | 53.49 | 44.03 | 73.67 | 49.78 | 46.48 | |
|
| [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) [π](https://gist.github.com/mlabonne/8329284d86035e6019edb11eb0933628) | 51.34 | 41.22 | 69.86 | 51.65 | 42.64 | |
|
| [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) [π](https://gist.github.com/mlabonne/616b6245137a9cfc4ea80e4c6e55d847) | 45.42 | 31.1 | 69.95 | 43.91 | 36.7 | |
|
|
|
## π³ Model family tree |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/ekwRGgnjzEOyprT8sEBFt.png) |
|
|
|
## π» Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "mlabonne/Daredevil-8B" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |