metadata
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
base_model:
- Intel/neural-chat-7b-v3-3
- openaccess-ai-collective/DPOpenHermes-7B-v2
- fblgit/una-cybertron-7b-v2-bf16
- openchat/openchat-3.5-0106
- OpenPipe/mistral-ft-optimized-1218
- mlabonne/NeuralHermes-2.5-Mistral-7B
Darewin-7B
Darewin-7B is a merge of the following models using LazyMergekit:
- Intel/neural-chat-7b-v3-3
- openaccess-ai-collective/DPOpenHermes-7B-v2
- fblgit/una-cybertron-7b-v2-bf16
- openchat/openchat-3.5-0106
- OpenPipe/mistral-ft-optimized-1218
- mlabonne/NeuralHermes-2.5-Mistral-7B
🧩 Configuration
models:
- model: mistralai/Mistral-7B-v0.1
# No parameters necessary for base model
- model: Intel/neural-chat-7b-v3-3
parameters:
density: 0.6
weight: 0.2
- model: openaccess-ai-collective/DPOpenHermes-7B-v2
parameters:
density: 0.6
weight: 0.1
- model: fblgit/una-cybertron-7b-v2-bf16
parameters:
density: 0.6
weight: 0.2
- model: openchat/openchat-3.5-0106
parameters:
density: 0.6
weight: 0.15
- model: OpenPipe/mistral-ft-optimized-1218
parameters:
density: 0.6
weight: 0.25
- model: mlabonne/NeuralHermes-2.5-Mistral-7B
parameters:
density: 0.6
weight: 0.1
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Darewin-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])