ChimeraLlama-3-8B
ChimeraLlama-3-8B outperforms Llama 3 8B Instruct on Nous' benchmark suite.
ChimeraLlama-3-8B is a merge of the following models using LazyMergekit:
- NousResearch/Meta-Llama-3-8B-Instruct
- mlabonne/OrpoLlama-3-8B
- Locutusque/Llama-3-Orca-1.0-8B
- abacusai/Llama-3-Smaug-8B
π Evaluation
Nous
Evaluation performed using LLM AutoEval, see the entire leaderboard here.
Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
---|---|---|---|---|---|
mlabonne/ChimeraLlama-3-8B π | 51.58 | 39.12 | 71.81 | 52.4 | 42.98 |
meta-llama/Meta-Llama-3-8B-Instruct π | 51.34 | 41.22 | 69.86 | 51.65 | 42.64 |
mlabonne/OrpoLlama-3-8B π | 48.63 | 34.17 | 70.59 | 52.39 | 37.36 |
meta-llama/Meta-Llama-3-8B π | 45.42 | 31.1 | 69.95 | 43.91 | 36.7 |
𧩠Configuration
models:
- model: NousResearch/Meta-Llama-3-8B
# No parameters necessary for base model
- model: NousResearch/Meta-Llama-3-8B-Instruct
parameters:
density: 0.58
weight: 0.4
- model: mlabonne/OrpoLlama-3-8B
parameters:
density: 0.52
weight: 0.2
- model: Locutusque/Llama-3-Orca-1.0-8B
parameters:
density: 0.52
weight: 0.2
- model: abacusai/Llama-3-Smaug-8B
parameters:
density: 0.52
weight: 0.2
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
parameters:
int8_mask: true
dtype: float16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/ChimeraLlama-3-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 123
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mlabonne/ChimeraLlama-3-8B
Merge model
this model