metadata
license: cc-by-nc-4.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- autoquant
- gguf
base_model:
- mlabonne/AlphaMonarch-7B
- beowolx/CodeNinja-1.0-OpenChat-7B
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- mlabonne/NeuralDaredevil-7B
Beyonder-4x7B-v3
Beyonder-4x7B-v3 is a Mixture of Experts (MoE) made with the following models using LazyMergekit:
- mlabonne/AlphaMonarch-7B
- beowolx/CodeNinja-1.0-OpenChat-7B
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- mlabonne/NeuralDaredevil-7B
🧩 Configuration
base_model: mlabonne/AlphaMonarch-7B
experts:
- source_model: mlabonne/AlphaMonarch-7B
positive_prompts:
- "chat"
- "assistant"
- "tell me"
- "explain"
- "I want"
- source_model: beowolx/CodeNinja-1.0-OpenChat-7B
positive_prompts:
- "code"
- "python"
- "javascript"
- "programming"
- "algorithm"
- source_model: SanjiWatsuki/Kunoichi-DPO-v2-7B
positive_prompts:
- "storywriting"
- "write"
- "scene"
- "story"
- "character"
- source_model: mlabonne/NeuralDaredevil-7B
positive_prompts:
- "reason"
- "math"
- "mathematics"
- "solve"
- "count"
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Beyonder-4x7B-v3"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])