license: other
tags:
- moe
- merge
- mergekit
- Mistral
- openchat/openchat-3.5-1210
- beowolx/CodeNinja-1.0-OpenChat-7B
- maywell/PiVoT-0.1-Starling-LM-RP
- WizardLM/WizardMath-7B-V1.1
license_name: microsoft-research-license
license_link: https://huggingface.co/WizardLM/WizardMath-7B-V1.1/resolve/main/LICENSE
model-index:
- name: Beyonder-4x7B-v2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.77
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.8
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.1
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 60.68
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.9
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.72
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
name: Open LLM Leaderboard
Beyonder-4x7B-v2
This model is a Mixture of Experts (MoE) made with mergekit (mixtral branch). It uses the following base models:
- openchat/openchat-3.5-1210
- beowolx/CodeNinja-1.0-OpenChat-7B
- maywell/PiVoT-0.1-Starling-LM-RP
- WizardLM/WizardMath-7B-V1.1
The recommended context length is 8k.
⚡ Quantized models
Thanks to TheBloke for the quantized models:
- GGUF: https://huggingface.co/TheBloke/Beyonder-4x7B-v2-GGUF
- AWQ: https://huggingface.co/TheBloke/Beyonder-4x7B-v2-AWQ
- GPTQ: https://huggingface.co/TheBloke/Beyonder-4x7B-v2-GPTQ
- EXL2: https://huggingface.co/bartowski/Beyonder-4x7B-v2-exl2
🏆 Evaluation
Beyonder-4x7B-v2 is competitive with Mixtral-8x7B-Instruct-v0.1 on the Open LLM Leaderboard, while only having 4 experts instead of 8.
It also displays a significant improvement over the individual experts.
It also performs very well compared to other models on Nous benchmark suite. It's almost as good as the best Yi-34B fine-tune, which is a much bigger model: 24.2B parameters + only two experts are selected during inference (so ~12B) vs. 34B param.
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
Beyonder-4x7B-v2 | 45.29 | 75.95 | 60.86 | 46.4 | 57.13 |
NeuralHermes-2.5-Mistral-7B | 43.67 | 73.24 | 55.37 | 41.76 | 53.51 |
OpenHermes-2.5-Mistral-7B | 42.75 | 72.99 | 52.99 | 40.94 | 52.42 |
Nous-Hermes-2-SOLAR-10.7B | 47.79 | 74.69 | 55.92 | 44.84 | 55.81 |
Nous-Hermes-2-Yi-34B | 50.27 | 76.00 | 60.34 | 46.69 | 58.33 |
AGIEval
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
agieval_aqua_rat | 0 | acc | 23.62 | ± | 2.67 |
acc_norm | 23.62 | ± | 2.67 | ||
agieval_logiqa_en | 0 | acc | 41.47 | ± | 1.93 |
acc_norm | 43.01 | ± | 1.94 | ||
agieval_lsat_ar | 0 | acc | 23.04 | ± | 2.78 |
acc_norm | 23.48 | ± | 2.80 | ||
agieval_lsat_lr | 0 | acc | 51.57 | ± | 2.22 |
acc_norm | 52.94 | ± | 2.21 | ||
agieval_lsat_rc | 0 | acc | 64.31 | ± | 2.93 |
acc_norm | 64.68 | ± | 2.92 | ||
agieval_sat_en | 0 | acc | 79.13 | ± | 2.84 |
acc_norm | 79.13 | ± | 2.84 | ||
agieval_sat_en_without_passage | 0 | acc | 43.20 | ± | 3.46 |
acc_norm | 43.20 | ± | 3.46 | ||
agieval_sat_math | 0 | acc | 34.55 | ± | 3.21 |
acc_norm | 32.27 | ± | 3.16 |
GPT4All
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_challenge | 0 | acc | 61.86 | ± | 1.42 |
acc_norm | 64.51 | ± | 1.40 | ||
arc_easy | 0 | acc | 85.06 | ± | 0.73 |
acc_norm | 82.45 | ± | 0.78 | ||
boolq | 1 | acc | 88.35 | ± | 0.56 |
hellaswag | 0 | acc | 68.04 | ± | 0.47 |
acc_norm | 85.12 | ± | 0.36 | ||
openbookqa | 0 | acc | 37.80 | ± | 2.17 |
acc_norm | 48.60 | ± | 2.24 | ||
piqa | 0 | acc | 83.08 | ± | 0.87 |
acc_norm | 83.95 | ± | 0.86 | ||
winogrande | 0 | acc | 78.69 | ± | 1.15 |
TruthfulQA
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
truthfulqa_mc | 1 | mc1 | 44.55 | ± | 1.74 |
mc2 | 60.86 | ± | 1.57 |
Bigbench
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
bigbench_causal_judgement | 0 | multiple_choice_grade | 58.95 | ± | 3.58 |
bigbench_date_understanding | 0 | multiple_choice_grade | 66.40 | ± | 2.46 |
bigbench_disambiguation_qa | 0 | multiple_choice_grade | 48.84 | ± | 3.12 |
bigbench_geometric_shapes | 0 | multiple_choice_grade | 22.56 | ± | 2.21 |
exact_str_match | 13.37 | ± | 1.80 | ||
bigbench_logical_deduction_five_objects | 0 | multiple_choice_grade | 30.40 | ± | 2.06 |
bigbench_logical_deduction_seven_objects | 0 | multiple_choice_grade | 20.57 | ± | 1.53 |
bigbench_logical_deduction_three_objects | 0 | multiple_choice_grade | 52.00 | ± | 2.89 |
bigbench_movie_recommendation | 0 | multiple_choice_grade | 44.40 | ± | 2.22 |
bigbench_navigate | 0 | multiple_choice_grade | 52.10 | ± | 1.58 |
bigbench_reasoning_about_colored_objects | 0 | multiple_choice_grade | 69.75 | ± | 1.03 |
bigbench_ruin_names | 0 | multiple_choice_grade | 55.36 | ± | 2.35 |
bigbench_salient_translation_error_detection | 0 | multiple_choice_grade | 23.65 | ± | 1.35 |
bigbench_snarks | 0 | multiple_choice_grade | 77.35 | ± | 3.12 |
bigbench_sports_understanding | 0 | multiple_choice_grade | 73.02 | ± | 1.41 |
bigbench_temporal_sequences | 0 | multiple_choice_grade | 46.80 | ± | 1.58 |
bigbench_tracking_shuffled_objects_five_objects | 0 | multiple_choice_grade | 22.08 | ± | 1.17 |
bigbench_tracking_shuffled_objects_seven_objects | 0 | multiple_choice_grade | 19.03 | ± | 0.94 |
bigbench_tracking_shuffled_objects_three_objects | 0 | multiple_choice_grade | 52.00 | ± | 2.89 |
🧩 Configuration
base_model: mlabonne/Marcoro14-7B-slerp
experts:
- source_model: openchat/openchat-3.5-1210
positive_prompts:
- "chat"
- "assistant"
- "tell me"
- "explain"
- source_model: beowolx/CodeNinja-1.0-OpenChat-7B
positive_prompts:
- "code"
- "python"
- "javascript"
- "programming"
- "algorithm"
- source_model: maywell/PiVoT-0.1-Starling-LM-RP
positive_prompts:
- "storywriting"
- "write"
- "scene"
- "story"
- "character"
- source_model: WizardLM/WizardMath-7B-V1.1
positive_prompts:
- "reason"
- "math"
- "mathematics"
- "solve"
- "count"
💻 Usage
Here's a notebook to run this model in 4-bit precision using a free T4 GPU on Google Colab.
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Beyonder-4x7B-v2"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Output:
A Mixture of Experts (ME) is a machine learning technique that combines multiple expert models to make predictions or decisions. Each expert model is specialized in a different aspect of the problem, and their outputs are combined to produce a more accurate and robust solution. This approach allows the model to leverage the strengths of individual experts and compensate for their weaknesses, improving overall performance.