metadata
datasets:
- glue
- anli
model-index:
- name: e5-large-mnli-anli
results: []
pipeline_tag: zero-shot-classification
language:
- en
license: mit
e5-large-mnli-anli
This model is a fine-tuned version of intfloat/e5-large on the glue (mnli) and anli dataset.
Model description
Text Embeddings by Weakly-Supervised Contrastive Pre-training. Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022
How to use the model
The model can be loaded with the zero-shot-classification
pipeline like so:
from transformers import pipeline
classifier = pipeline("zero-shot-classification",
model="mjwong/e5-large-mnli-anli")
You can then use this pipeline to classify sequences into any of the class names you specify.
sequence_to_classify = "one day I will see the world"
candidate_labels = ['travel', 'cooking', 'dancing']
classifier(sequence_to_classify, candidate_labels)
#{'sequence': 'one day I will see the world',
# 'labels': ['travel', 'dancing', 'cooking'],
# 'scores': [0.9878318905830383, 0.01044005248695612, 0.001728130504488945]}
If more than one candidate label can be correct, pass multi_class=True
to calculate each class independently:
candidate_labels = ['travel', 'cooking', 'dancing', 'exploration']
classifier(sequence_to_classify, candidate_labels, multi_class=True)
#{'sequence': 'one day I will see the world',
# 'labels': ['exploration', 'travel', 'dancing', 'cooking'],
# 'scores': [0.9956096410751343,
# 0.9929478764533997,
# 0.21706733107566833,
# 0.0005817742203362286]}
Eval results
The model was evaluated using the test sets for MultiNLI and ANLI. The metric used is accuracy.
Datasets | mnli_test_m | mnli_test_mm | anli_test_r1 | anli_test_r2 | anli_test_r2 |
---|---|---|---|---|---|
e5-base-mnli | 0.840 | 0.839 | 0.231 | 0.285 | 0.309 |
e5-large-mnli | 0.868 | 0.869 | 0.301 | 0.296 | 0.294 |
e5-large-mnli-anli | 0.843 | 0.848 | 0.646 | 0.484 | 0.458 |
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
Framework versions
- Transformers 4.28.1
- Pytorch 1.12.1+cu116
- Datasets 2.11.0
- Tokenizers 0.12.1