license: apache-2.0
language:
- en
tags:
- finetuned
pipeline_tag: text-generation
inference: true
widget:
- messages:
- role: user
content: What is your favorite condiment?
Model Card for Mistral-7B-Instruct-v0.2
The Mistral-7B-Instruct-v0.2 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.2.
Mistral-7B-Instruct-v0.2 has the following changes compared to Mistral-7B-Instruct-v0.1
- 32k context window (vs 8k context in v0.1)
- Rope-theta = 1e6
- No Sliding-Window Attention
How to use
It is recommended to use mistralai/Mistral-7B-Instruct-v0.2
with mistral_inference and mistral_common. For HF transformers
code snippets, please keep scrolling.
Generate with mistral_inference
and mistral_common
Install dependencies
pip install mistral_inference mistral_common
Download model
from huggingface_hub import snapshot_download
from pathlib import Path
mistral_models_path = Path.home().joinpath('mistral_models', '7B-Instruct-v0.2')
mistral_models_path.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id="mistralai/Mistral-7B-Instruct-v0.2", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model"], local_dir=mistral_models_path)
Chat
After installing mistral_inference
, a mistral-chat
CLI command should be available in your environment. You can chat with the model using
mistral-chat $HOME/mistral_models/7B-Instruct-v0.2 --instruct --max_tokens 256
Instruct following
from mistral_inference.model import Transformer
from mistral_inference.generate import generate
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model")
# tokenizer = MistralTokenizer.v1()
model = Transformer.from_folder(mistral_models_path)
completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])
tokens = tokenizer.encode_chat_completion(completion_request).tokens
out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
print(result)
Generate with transformers
Install dependencies
pip install transformers
Instruct following
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
model.to("cuda")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
messages_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
inputs = tokenizer(tool_use_prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=1000)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
Or:
from transformers import pipeline
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2")
result = chatbot(messages)
print(result)
Limitations
The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
The Mistral AI Team
Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.