Steamout's picture
Update README.md
5220106 verified
|
raw
history blame
5.33 kB
---
libray_name: transformers
pipeline_tag: text-generation
license: other
license_name: llama3
license_link: LICENSE
language:
- ko
- en
tags:
- meta
- llama
- llama-3
- akallama
library_name: transformers
---
<a href="https://huggingface.co/collections/mirlab/akallama-66338859b09221f3607fdfcd">
<img src="https://github.com/0110tpwls/project/blob/master/image_720.png?raw=true" width="40%"/>
</a>
# AKALLAMA
AkaLlama is a series of Korean language models designed for practical usability across a wide range of tasks.
The initial model, AkaLlama-v0.1, is a fine-tuned version of Meta-Llama-3-70b-Instruct. It has been trained on a custom mix of publicly available datasets curated by the MIR Lab.
Our goal is to explore cost-effective ways to adapt high-performing LLMs for specific use cases, such as different languages (e.g., Korean) or domains (e.g., organization-specific chatbots).
### Model Description
This is the model card of a πŸ€— transformers model that has been pushed on the Hub.
- **Developed by:** [Yonsei MIRLab](https://mirlab.yonsei.ac.kr/)
- **Language(s) (NLP):** Korean, English
- **License:** llama3
- **Finetuned from model:** [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct)
## How to use
This repo provides full model weight files for AkaLlama-70B-v0.1.
# Use with transformers
See the snippet below for usage with Transformers:
```python
import transformers
import torch
model_id = "mirlab/AkaLlama-llama3-70b-v0.1"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device="auto",
)
system_prompt = """
당신은 μ—°μ„ΈλŒ€ν•™κ΅ λ©€ν‹°λͺ¨λ‹¬ 연ꡬ싀 (MIR lab) 이 λ§Œλ“  λŒ€κ·œλͺ¨ μ–Έμ–΄ λͺ¨λΈμΈ AkaLlama (μ•„μΉ΄λΌλ§ˆ) μž…λ‹ˆλ‹€.\nλ‹€μŒ 지침을 λ”°λ₯΄μ„Έμš”:\n1. μ‚¬μš©μžκ°€ λ³„λ„λ‘œ μš”μ²­ν•˜μ§€ μ•ŠλŠ” ν•œ 항상 ν•œκΈ€λ‘œ μ†Œν†΅ν•˜μ„Έμš”.\n2. μœ ν•΄ν•˜κ±°λ‚˜ λΉ„μœ€λ¦¬μ , 차별적, μœ„ν—˜ν•˜κ±°λ‚˜ λΆˆλ²•μ μΈ λ‚΄μš©μ΄ 닡변에 ν¬ν•¨λ˜μ–΄μ„œλŠ” μ•ˆ λ©λ‹ˆλ‹€.\n3. 질문이 말이 λ˜μ§€ μ•Šκ±°λ‚˜ 사싀에 λΆ€ν•©ν•˜μ§€ μ•ŠλŠ” 경우 μ •λ‹΅ λŒ€μ‹  κ·Έ 이유λ₯Ό μ„€λͺ…ν•˜μ„Έμš”. μ§ˆλ¬Έμ— λŒ€ν•œ 닡을 λͺ¨λ₯Έλ‹€λ©΄ 거짓 정보λ₯Ό κ³΅μœ ν•˜μ§€ λ§ˆμ„Έμš”.\n4. μ•ˆμ „μ΄λ‚˜ μœ€λ¦¬μ— μœ„λ°°λ˜μ§€ μ•ŠλŠ” ν•œ μ‚¬μš©μžμ˜ λͺ¨λ“  μ§ˆλ¬Έμ— μ™„μ „ν•˜κ³  ν¬κ΄„μ μœΌλ‘œ λ‹΅λ³€ν•˜μ„Έμš”.
"""
messages = [
{"role": "system", "content": "system_prompt"},
{"role": "user", "content": "λ„€ 이름은 뭐야?"},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```
## Training Details
### Training Procedure
We trained AkaLlama using a preference learning alignment algorithm called [Odds Ratio Preference Optimization (ORPO)](https://huggingface.co/papers/2403.07691).
Our training pipeline is almost identical to that of [HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1), aside from minor hyperparameter changes.
Please check out Huggingface's [alignment handbook](https://github.com/huggingface/alignment-handbook?tab=readme-ov-file) for further details, including the chat template.
### Training Data
Detailed descriptions regarding training data will be announced later.
### Examples
<a href="https://huggingface.co/collections/mirlab/akallama-66338859b09221f3607fdfcd">
<img src="https://github.com/0110tpwls/project/blob/master/image (8).png?raw=true" width="80%"/>
</a>
<details>
<summary><b>Math Solving[CLICK TO EXPAND]</b></summary>
<a href="https://huggingface.co/collections/mirlab/akallama-66338859b09221f3607fdfcd">
<img src="https://github.com/0110tpwls/project/blob/master/image (9).png?raw=true" width="80%"/>
</a>
</details>
<details>
<summary><b>Writting[CLICK TO EXPAND]</b></summary>
<a href="https://huggingface.co/collections/mirlab/akallama-66338859b09221f3607fdfcd">
<img src="https://github.com/0110tpwls/project/blob/master/image (13).png?raw=true" width="80%"/>
</a>
<a href="https://huggingface.co/collections/mirlab/akallama-66338859b09221f3607fdfcd">
<img src="https://github.com/0110tpwls/project/blob/master/image (7).png?raw=true" width="80%"/>
</a>
</details>
<details>
<summary><b>logical Reasoning[CLICK TO EXPAND]</b></summary>
<a href="https://huggingface.co/collections/mirlab/akallama-66338859b09221f3607fdfcd">
<img src="https://github.com/0110tpwls/project/blob/master/image (15).png?raw=true" width="80%"/>
</a>
</details>
<details>
<summary><b>Coding [CLICK TO EXPAND]</b></summary>
<a href="https://huggingface.co/collections/mirlab/akallama-66338859b09221f3607fdfcd">
<img src="https://github.com/0110tpwls/project/blob/master/image (11).png?raw=true" width="80%"/>
</a>
</details>
You can find more examples at [our project page](https://yonsei-mir.github.io/AkaLLaMA-page)
## Special Thanks
- Data Center of the Department of Artificial Intelligence at Yonsei University for the computation resources