SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 5 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
4 |
|
1 |
|
0 |
|
2 |
|
3 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9813 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt6_3_test_flat")
# Run inference
preds = model("더툴랩 더스타일 래쉬 맥스(TSL004) × 2개 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 13 | 19.2707 | 47 |
Label | Training Sample Count |
---|---|
0 | 50 |
1 | 9 |
2 | 50 |
3 | 22 |
4 | 50 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0035 | 1 | 0.4744 | - |
0.1767 | 50 | 0.4176 | - |
0.3534 | 100 | 0.3618 | - |
0.5300 | 150 | 0.2985 | - |
0.7067 | 200 | 0.2327 | - |
0.8834 | 250 | 0.1017 | - |
1.0601 | 300 | 0.0185 | - |
1.2367 | 350 | 0.0037 | - |
1.4134 | 400 | 0.0018 | - |
1.5901 | 450 | 0.0009 | - |
1.7668 | 500 | 0.0004 | - |
1.9435 | 550 | 0.0005 | - |
2.1201 | 600 | 0.0002 | - |
2.2968 | 650 | 0.0002 | - |
2.4735 | 700 | 0.0001 | - |
2.6502 | 750 | 0.0001 | - |
2.8269 | 800 | 0.0001 | - |
3.0035 | 850 | 0.0001 | - |
3.1802 | 900 | 0.0001 | - |
3.3569 | 950 | 0.0 | - |
3.5336 | 1000 | 0.0 | - |
3.7102 | 1050 | 0.0001 | - |
3.8869 | 1100 | 0.0001 | - |
4.0636 | 1150 | 0.0 | - |
4.2403 | 1200 | 0.0 | - |
4.4170 | 1250 | 0.0 | - |
4.5936 | 1300 | 0.0 | - |
4.7703 | 1350 | 0.0 | - |
4.9470 | 1400 | 0.0 | - |
5.1237 | 1450 | 0.0 | - |
5.3004 | 1500 | 0.0 | - |
5.4770 | 1550 | 0.0 | - |
5.6537 | 1600 | 0.0 | - |
5.8304 | 1650 | 0.0 | - |
6.0071 | 1700 | 0.0 | - |
6.1837 | 1750 | 0.0 | - |
6.3604 | 1800 | 0.0 | - |
6.5371 | 1850 | 0.0 | - |
6.7138 | 1900 | 0.0 | - |
6.8905 | 1950 | 0.0 | - |
7.0671 | 2000 | 0.0 | - |
7.2438 | 2050 | 0.0 | - |
7.4205 | 2100 | 0.0 | - |
7.5972 | 2150 | 0.0023 | - |
7.7739 | 2200 | 0.0029 | - |
7.9505 | 2250 | 0.0001 | - |
8.1272 | 2300 | 0.0 | - |
8.3039 | 2350 | 0.0 | - |
8.4806 | 2400 | 0.0 | - |
8.6572 | 2450 | 0.0 | - |
8.8339 | 2500 | 0.0 | - |
9.0106 | 2550 | 0.0 | - |
9.1873 | 2600 | 0.0 | - |
9.3640 | 2650 | 0.0 | - |
9.5406 | 2700 | 0.0 | - |
9.7173 | 2750 | 0.0 | - |
9.8940 | 2800 | 0.0 | - |
10.0707 | 2850 | 0.0 | - |
10.2473 | 2900 | 0.0 | - |
10.4240 | 2950 | 0.0 | - |
10.6007 | 3000 | 0.0 | - |
10.7774 | 3050 | 0.0 | - |
10.9541 | 3100 | 0.0 | - |
11.1307 | 3150 | 0.0 | - |
11.3074 | 3200 | 0.0 | - |
11.4841 | 3250 | 0.0 | - |
11.6608 | 3300 | 0.0 | - |
11.8375 | 3350 | 0.0 | - |
12.0141 | 3400 | 0.0 | - |
12.1908 | 3450 | 0.0 | - |
12.3675 | 3500 | 0.0 | - |
12.5442 | 3550 | 0.0 | - |
12.7208 | 3600 | 0.0 | - |
12.8975 | 3650 | 0.0 | - |
13.0742 | 3700 | 0.0 | - |
13.2509 | 3750 | 0.0 | - |
13.4276 | 3800 | 0.0 | - |
13.6042 | 3850 | 0.0 | - |
13.7809 | 3900 | 0.0 | - |
13.9576 | 3950 | 0.0 | - |
14.1343 | 4000 | 0.0 | - |
14.3110 | 4050 | 0.0 | - |
14.4876 | 4100 | 0.0 | - |
14.6643 | 4150 | 0.0 | - |
14.8410 | 4200 | 0.0 | - |
15.0177 | 4250 | 0.0 | - |
15.1943 | 4300 | 0.0 | - |
15.3710 | 4350 | 0.0 | - |
15.5477 | 4400 | 0.0 | - |
15.7244 | 4450 | 0.0 | - |
15.9011 | 4500 | 0.0005 | - |
16.0777 | 4550 | 0.0008 | - |
16.2544 | 4600 | 0.0001 | - |
16.4311 | 4650 | 0.0 | - |
16.6078 | 4700 | 0.0 | - |
16.7845 | 4750 | 0.0 | - |
16.9611 | 4800 | 0.0002 | - |
17.1378 | 4850 | 0.0 | - |
17.3145 | 4900 | 0.0003 | - |
17.4912 | 4950 | 0.0 | - |
17.6678 | 5000 | 0.0 | - |
17.8445 | 5050 | 0.0 | - |
18.0212 | 5100 | 0.0 | - |
18.1979 | 5150 | 0.0 | - |
18.3746 | 5200 | 0.0 | - |
18.5512 | 5250 | 0.0 | - |
18.7279 | 5300 | 0.0 | - |
18.9046 | 5350 | 0.0 | - |
19.0813 | 5400 | 0.0 | - |
19.2580 | 5450 | 0.0 | - |
19.4346 | 5500 | 0.0 | - |
19.6113 | 5550 | 0.0 | - |
19.7880 | 5600 | 0.0 | - |
19.9647 | 5650 | 0.0 | - |
20.1413 | 5700 | 0.0 | - |
20.3180 | 5750 | 0.0 | - |
20.4947 | 5800 | 0.0 | - |
20.6714 | 5850 | 0.0 | - |
20.8481 | 5900 | 0.0 | - |
21.0247 | 5950 | 0.0 | - |
21.2014 | 6000 | 0.0 | - |
21.3781 | 6050 | 0.0 | - |
21.5548 | 6100 | 0.0 | - |
21.7314 | 6150 | 0.0 | - |
21.9081 | 6200 | 0.0 | - |
22.0848 | 6250 | 0.0 | - |
22.2615 | 6300 | 0.0 | - |
22.4382 | 6350 | 0.0 | - |
22.6148 | 6400 | 0.0 | - |
22.7915 | 6450 | 0.0 | - |
22.9682 | 6500 | 0.0 | - |
23.1449 | 6550 | 0.0 | - |
23.3216 | 6600 | 0.0 | - |
23.4982 | 6650 | 0.0 | - |
23.6749 | 6700 | 0.0 | - |
23.8516 | 6750 | 0.0 | - |
24.0283 | 6800 | 0.0 | - |
24.2049 | 6850 | 0.0 | - |
24.3816 | 6900 | 0.0 | - |
24.5583 | 6950 | 0.0 | - |
24.7350 | 7000 | 0.0 | - |
24.9117 | 7050 | 0.0 | - |
25.0883 | 7100 | 0.0 | - |
25.2650 | 7150 | 0.0 | - |
25.4417 | 7200 | 0.0 | - |
25.6184 | 7250 | 0.0 | - |
25.7951 | 7300 | 0.0 | - |
25.9717 | 7350 | 0.0 | - |
26.1484 | 7400 | 0.0 | - |
26.3251 | 7450 | 0.0 | - |
26.5018 | 7500 | 0.0 | - |
26.6784 | 7550 | 0.0 | - |
26.8551 | 7600 | 0.0 | - |
27.0318 | 7650 | 0.0 | - |
27.2085 | 7700 | 0.0 | - |
27.3852 | 7750 | 0.0 | - |
27.5618 | 7800 | 0.0 | - |
27.7385 | 7850 | 0.0 | - |
27.9152 | 7900 | 0.0 | - |
28.0919 | 7950 | 0.0 | - |
28.2686 | 8000 | 0.0 | - |
28.4452 | 8050 | 0.0 | - |
28.6219 | 8100 | 0.0 | - |
28.7986 | 8150 | 0.0 | - |
28.9753 | 8200 | 0.0 | - |
29.1519 | 8250 | 0.0 | - |
29.3286 | 8300 | 0.0 | - |
29.5053 | 8350 | 0.0 | - |
29.6820 | 8400 | 0.0 | - |
29.8587 | 8450 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.