File size: 11,430 Bytes
306aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 내셔널지오그래픽 NATIONALGEOGRAPHIC 여성 코스토니 플리스 뽀글이 후드 풀집업 N224WFJ910 스포츠/레저>등산>등산의류>재킷
- text: JQS EIDER 레인코트 DUA23917P1 스포츠/레저>등산>등산의류>재킷
- text: 풍수나침반 소형 고정밀 지리 나침판 도구 교육용 풍수소품 전문가용 수맥 측정 휴대용 나반 스포츠/레저>등산>등산장비>나침반
- text: 아이더 국내정품 EIDER 공용 플리스 이너장갑 DUW22V08Z1 1179873 스포츠/레저>등산>등산잡화>장갑
- text: 코오롱스포츠 남녀공용 경량 브림 버킷햇 QERFX22680WIN 스포츠/레저>등산>등산잡화>모자
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 1.0
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                         |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0   | <ul><li>'디스커버리익스페디션 여성 제임스쿡 자켓 바람막이 DWWJ34024 스포츠/레저>등산>등산의류>재킷'</li><li>'아이더 버서틀 여성 슬림 구스다운 자켓 여자경량패딩 DWP22541 스포츠/레저>등산>등산의류>점퍼'</li><li>'블랙야크 남여공용 YAK ON-H 하이로프트 플리스 1BYVSW1006 스포츠/레저>등산>등산의류>조끼'</li></ul> |
| 0.0   | <ul><li>'클라이밍 클라이밍초크 등반 카라비너 모양 안전 배낭레인커버 하강기 스포츠/레저>등산>기타등산장비'</li><li>'17 노스페이스 반다나 페이즐리 80 S NA5BQ02D 스포츠/레저>등산>기타등산장비'</li><li>'암벽등반 등강기 실내 클라이밍 도르래 장비 하강기 스포츠/레저>등산>기타등산장비'</li></ul>                      |
| 5.0   | <ul><li>'클라이밍화 초보자 입문용 남성 여성 암벽화 신발 스포츠/레저>등산>등산화'</li><li>'HOKA 남성 카하 2 로우 고어텍스 - 1123190-BBLC 스포츠/레저>등산>등산화'</li><li>'코오롱스포츠 TRAIL 남녀공용 트레일러닝 슈즈 TL-1 FE4TX24010YEX 스포츠/레저>등산>등산화'</li></ul>                   |
| 4.0   | <ul><li>'히키스 카라비너 가방걸이 S 스포츠/레저>등산>등산장비>카라비너'</li><li>'살로몬 Salomon 트레일 게이터 M 7 5-9 스포츠/레저>등산>등산장비>스패츠'</li><li>'알로코리아 WM501 스포츠/레저>등산>등산장비>손난로'</li></ul>                                                        |
| 3.0   | <ul><li>'K2 Safety 메쉬 햇모자 IUS20931 스포츠/레저>등산>등산잡화>모자'</li><li>'MILLET 밀레 남성 봄여름 등산 M 간절기 숏장갑 MXTUL004 스포츠/레저>등산>등산잡화>장갑'</li><li>'살로몬 등산양말 365 크루 FBCSB SO LC2085200 761896 스포츠/레저>등산>등산잡화>양말'</li></ul>         |
| 1.0   | <ul><li>'노스페이스 브리즈 힙색 NN2HP01 스포츠/레저>등산>등산가방'</li><li>'아크테릭스 ARC TERYX 맨티스 16 백팩 가방 MANTIS BACKPACK ABOSUX6136BSR 스포츠/레저>등산>등산가방'</li><li>'블랙야크 BAC 어스유 등산가방 2BYKSX1904 36L 스포츠/레저>등산>등산가방'</li></ul>            |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 1.0      |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_sl8")
# Run inference
preds = model("JQS EIDER 레인코트 DUA23917P1 스포츠/레저>등산>등산의류>재킷")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 8.5167 | 19  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 70                    |
| 1.0   | 70                    |
| 2.0   | 70                    |
| 3.0   | 70                    |
| 4.0   | 70                    |
| 5.0   | 70                    |

### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0120  | 1    | 0.4926        | -               |
| 0.6024  | 50   | 0.4841        | -               |
| 1.2048  | 100  | 0.1569        | -               |
| 1.8072  | 150  | 0.0001        | -               |
| 2.4096  | 200  | 0.0           | -               |
| 3.0120  | 250  | 0.0           | -               |
| 3.6145  | 300  | 0.0           | -               |
| 4.2169  | 350  | 0.0           | -               |
| 4.8193  | 400  | 0.0           | -               |
| 5.4217  | 450  | 0.0           | -               |
| 6.0241  | 500  | 0.0           | -               |
| 6.6265  | 550  | 0.0           | -               |
| 7.2289  | 600  | 0.0           | -               |
| 7.8313  | 650  | 0.0           | -               |
| 8.4337  | 700  | 0.0           | -               |
| 9.0361  | 750  | 0.0           | -               |
| 9.6386  | 800  | 0.0           | -               |
| 10.2410 | 850  | 0.0           | -               |
| 10.8434 | 900  | 0.0           | -               |
| 11.4458 | 950  | 0.0           | -               |
| 12.0482 | 1000 | 0.0           | -               |
| 12.6506 | 1050 | 0.0           | -               |
| 13.2530 | 1100 | 0.0           | -               |
| 13.8554 | 1150 | 0.0           | -               |
| 14.4578 | 1200 | 0.0           | -               |
| 15.0602 | 1250 | 0.0           | -               |
| 15.6627 | 1300 | 0.0           | -               |
| 16.2651 | 1350 | 0.0           | -               |
| 16.8675 | 1400 | 0.0           | -               |
| 17.4699 | 1450 | 0.0           | -               |
| 18.0723 | 1500 | 0.0           | -               |
| 18.6747 | 1550 | 0.0           | -               |
| 19.2771 | 1600 | 0.0           | -               |
| 19.8795 | 1650 | 0.0           | -               |
| 20.4819 | 1700 | 0.0           | -               |
| 21.0843 | 1750 | 0.0           | -               |
| 21.6867 | 1800 | 0.0           | -               |
| 22.2892 | 1850 | 0.0           | -               |
| 22.8916 | 1900 | 0.0           | -               |
| 23.4940 | 1950 | 0.0           | -               |
| 24.0964 | 2000 | 0.0           | -               |
| 24.6988 | 2050 | 0.0           | -               |
| 25.3012 | 2100 | 0.0           | -               |
| 25.9036 | 2150 | 0.0           | -               |
| 26.5060 | 2200 | 0.0           | -               |
| 27.1084 | 2250 | 0.0           | -               |
| 27.7108 | 2300 | 0.0           | -               |
| 28.3133 | 2350 | 0.0           | -               |
| 28.9157 | 2400 | 0.0           | -               |
| 29.5181 | 2450 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->