SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2.0
  • '디스커버리익스페디션 여성 제임스쿡 자켓 바람막이 DWWJ34024 스포츠/레저>등산>등산의류>재킷'
  • '아이더 버서틀 여성 슬림 구스다운 자켓 여자경량패딩 DWP22541 스포츠/레저>등산>등산의류>점퍼'
  • '블랙야크 남여공용 YAK ON-H 하이로프트 플리스 1BYVSW1006 스포츠/레저>등산>등산의류>조끼'
0.0
  • '클라이밍 클라이밍초크 등반 카라비너 모양 안전 배낭레인커버 하강기 스포츠/레저>등산>기타등산장비'
  • '17 노스페이스 반다나 페이즐리 80 S NA5BQ02D 스포츠/레저>등산>기타등산장비'
  • '암벽등반 등강기 실내 클라이밍 도르래 장비 하강기 스포츠/레저>등산>기타등산장비'
5.0
  • '클라이밍화 초보자 입문용 남성 여성 암벽화 신발 스포츠/레저>등산>등산화'
  • 'HOKA 남성 카하 2 로우 고어텍스 - 1123190-BBLC 스포츠/레저>등산>등산화'
  • '코오롱스포츠 TRAIL 남녀공용 트레일러닝 슈즈 TL-1 FE4TX24010YEX 스포츠/레저>등산>등산화'
4.0
  • '히키스 카라비너 가방걸이 S 스포츠/레저>등산>등산장비>카라비너'
  • '살로몬 Salomon 트레일 게이터 M 7 5-9 스포츠/레저>등산>등산장비>스패츠'
  • '알로코리아 WM501 스포츠/레저>등산>등산장비>손난로'
3.0
  • 'K2 Safety 메쉬 햇모자 IUS20931 스포츠/레저>등산>등산잡화>모자'
  • 'MILLET 밀레 남성 봄여름 등산 M 간절기 숏장갑 MXTUL004 스포츠/레저>등산>등산잡화>장갑'
  • '살로몬 등산양말 365 크루 FBCSB SO LC2085200 761896 스포츠/레저>등산>등산잡화>양말'
1.0
  • '노스페이스 브리즈 힙색 NN2HP01 스포츠/레저>등산>등산가방'
  • '아크테릭스 ARC TERYX 맨티스 16 백팩 가방 MANTIS BACKPACK ABOSUX6136BSR 스포츠/레저>등산>등산가방'
  • '블랙야크 BAC 어스유 등산가방 2BYKSX1904 36L 스포츠/레저>등산>등산가방'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_sl8")
# Run inference
preds = model("JQS EIDER 레인코트 DUA23917P1 스포츠/레저>등산>등산의류>재킷")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 8.5167 19
Label Training Sample Count
0.0 70
1.0 70
2.0 70
3.0 70
4.0 70
5.0 70

Training Hyperparameters

  • batch_size: (256, 256)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 50
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0120 1 0.4926 -
0.6024 50 0.4841 -
1.2048 100 0.1569 -
1.8072 150 0.0001 -
2.4096 200 0.0 -
3.0120 250 0.0 -
3.6145 300 0.0 -
4.2169 350 0.0 -
4.8193 400 0.0 -
5.4217 450 0.0 -
6.0241 500 0.0 -
6.6265 550 0.0 -
7.2289 600 0.0 -
7.8313 650 0.0 -
8.4337 700 0.0 -
9.0361 750 0.0 -
9.6386 800 0.0 -
10.2410 850 0.0 -
10.8434 900 0.0 -
11.4458 950 0.0 -
12.0482 1000 0.0 -
12.6506 1050 0.0 -
13.2530 1100 0.0 -
13.8554 1150 0.0 -
14.4578 1200 0.0 -
15.0602 1250 0.0 -
15.6627 1300 0.0 -
16.2651 1350 0.0 -
16.8675 1400 0.0 -
17.4699 1450 0.0 -
18.0723 1500 0.0 -
18.6747 1550 0.0 -
19.2771 1600 0.0 -
19.8795 1650 0.0 -
20.4819 1700 0.0 -
21.0843 1750 0.0 -
21.6867 1800 0.0 -
22.2892 1850 0.0 -
22.8916 1900 0.0 -
23.4940 1950 0.0 -
24.0964 2000 0.0 -
24.6988 2050 0.0 -
25.3012 2100 0.0 -
25.9036 2150 0.0 -
26.5060 2200 0.0 -
27.1084 2250 0.0 -
27.7108 2300 0.0 -
28.3133 2350 0.0 -
28.9157 2400 0.0 -
29.5181 2450 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
1,257
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for mini1013/master_cate_sl8

Base model

klue/roberta-base
Finetuned
(213)
this model

Evaluation results