File size: 14,925 Bytes
234aa20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 스타 더프로페셔널 축구공 5호 SB3015 스포츠/레저>축구>축구공
- text: 미즈노 미즈노 스피드 마하 2 주니어 런닝화 K1GC2222-51 스포츠/레저>축구>축구화
- text: 스타 풋살공 매치업 접착구 4호 스쿠알로 공가방 스쿠알로 펌프 FB514TB 스포츠/레저>축구>축구공
- text: 타비오 TABIO 축구 발가락 양말 풋살 양말 숏 그립 삭스 스포츠/레저>축구>축구양말
- text: 스타 매니아 풋살공 FB61 볼 축구공 싸커 피구 발야구 WBA134E 스포츠/레저>축구>축구공
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1.0
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 10 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.0 | <ul><li>'엄브로 풋살화 주니어 엑셀레이터 사라 WIDE IN UF2V02W 스포츠/레저>축구>풋살화'</li><li>'푸마 퓨처 7 플레이 TT V 주니어 10774001 스포츠/레저>축구>풋살화'</li><li>'아동 키즈 주니어 풋살화 아식스 1154A090 011 스포츠/레저>축구>풋살화'</li></ul> |
| 6.0 | <ul><li>'22-23시즌 파리생제르망 메시유니폼 네이마르 음바페 아동용 성인용 유소년 축구유니폼 키즈 PSG 스포츠/레저>축구>축구의류'</li><li>'토트넘 유니폼 어웨이 축구유니폼 반팔 어센틱 스포츠/레저>축구>축구의류'</li><li>'미즈노 베이직 디자인 남여공용 빅로고 라운드넥 피스테 3C 그린 32YE3020 스포츠/레저>축구>축구의류'</li></ul> |
| 5.0 | <ul><li>'바주카골 고급 팝업 골대 충격흡수 접이식 휴대용 풋살 동호회 학교 체육 튼튼한 교구 스포츠/레저>축구>축구연습용품'</li><li>'프로맥스 풋살골대 축구 미니게임 훈련 골대 6300TA2 스포츠/레저>축구>축구연습용품'</li><li>'축구 접시콘 스포츠/레저>축구>축구연습용품'</li></ul> |
| 2.0 | <ul><li>'풋살공 게임볼 4호 풋살볼 풋살 축구용품 스타 축구 FB52405 스포츠/레저>축구>축구공'</li><li>'스타 축구공 더 폴라리스 2000 4호 흰색노랑색 SB234 스포츠/레저>축구>축구공'</li><li>'키카 이글200 축구공 그린 KFS-N102 스포츠/레저>축구>축구공'</li></ul> |
| 8.0 | <ul><li>'미즈노 다이나팩 모렐리아 2 프로 AS 풋살화 형광 GD241445 270 스포츠/레저>축구>축구화'</li><li>'미즈노 축구화 모렐리아 네오 3 프로 MD P1GA238304 스포츠/레저>축구>축구화'</li><li>'아디다스 코파 센스 1 HG 축구화 FZ3712 스포츠/레저>축구>축구화'</li></ul> |
| 3.0 | <ul><li>'PARIS SAINT-GERMAIN 비밀 파리생제르망 신가드 S M L SN-01 스포츠/레저>축구>축구보호대'</li><li>'미즈노 축구용품 신가드 제로글라이드 정강이보호대 스포츠/레저>축구>축구보호대'</li><li>'풋볼몬스터 신가드 슬리브 2p 정강이보호대 다리보호대 스포츠/레저>축구>축구보호대'</li></ul> |
| 1.0 | <ul><li>'TOP셀러 더블백 더플백 헬스 헬스장 망치 가방 짐백 축구 복싱 운동 가방 스포츠/레저>축구>축구가방>필드용'</li><li>'디아도라 테니스 보스턴백 OFF 스포츠/레저>축구>축구가방>필드용'</li><li>'스포츠트라이브 짐백 축구공가방 공가방 신발주머니 스포츠/레저>축구>축구가방>슈즈백'</li></ul> |
| 4.0 | <ul><li>'성인용 논슬립 양말 스포츠/레저>축구>축구양말'</li><li>'훌리건 싱글 논슬립 스타킹 hss001whns2 축구 양말 스포츠/레저>축구>축구양말'</li><li>'아디다스 성인 어른 축구화 풋살 양말 스타킹 260 남성 장목 양발 경기 남자 삭스 스포츠/레저>축구>축구양말'</li></ul> |
| 0.0 | <ul><li>'동호회 체육대회 축구 심판 접이식 수첩 경고카드 연필 심판용품 스포츠/레저>축구>기타축구용품'</li><li>'볼 트래핑 축구 연습 리프팅 연습 2호 5호 어린이 축구교실 풋살 트레인 훈련 스포츠/레저>축구>기타축구용품'</li><li>'선수교체판 번호사인 스포츠/레저>축구>기타축구용품'</li></ul> |
| 7.0 | <ul><li>'미즈노 모렐리아 축구 풋살 겨울 방한 남성 필드 장갑 스포츠/레저>축구>축구장갑'</li><li>'나이키 매치 FA20 골키퍼장갑 CQ7799-637 스포츠/레저>축구>축구장갑'</li><li>'푸마 퓨쳐 얼티메이트 NC 골키퍼장갑 04192301 스포츠/레저>축구>축구장갑'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_sl27")
# Run inference
preds = model("스타 더프로페셔널 축구공 5호 SB3015 스포츠/레저>축구>축구공")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 2 | 8.7243 | 20 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 70 |
| 1.0 | 70 |
| 2.0 | 70 |
| 3.0 | 70 |
| 4.0 | 70 |
| 5.0 | 70 |
| 6.0 | 70 |
| 7.0 | 70 |
| 8.0 | 70 |
| 9.0 | 70 |
### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0073 | 1 | 0.4831 | - |
| 0.3650 | 50 | 0.4992 | - |
| 0.7299 | 100 | 0.3805 | - |
| 1.0949 | 150 | 0.1114 | - |
| 1.4599 | 200 | 0.0275 | - |
| 1.8248 | 250 | 0.0177 | - |
| 2.1898 | 300 | 0.0104 | - |
| 2.5547 | 350 | 0.0014 | - |
| 2.9197 | 400 | 0.0001 | - |
| 3.2847 | 450 | 0.0001 | - |
| 3.6496 | 500 | 0.0001 | - |
| 4.0146 | 550 | 0.0001 | - |
| 4.3796 | 600 | 0.0 | - |
| 4.7445 | 650 | 0.0 | - |
| 5.1095 | 700 | 0.0 | - |
| 5.4745 | 750 | 0.0 | - |
| 5.8394 | 800 | 0.0 | - |
| 6.2044 | 850 | 0.0 | - |
| 6.5693 | 900 | 0.0 | - |
| 6.9343 | 950 | 0.0 | - |
| 7.2993 | 1000 | 0.0 | - |
| 7.6642 | 1050 | 0.0 | - |
| 8.0292 | 1100 | 0.0 | - |
| 8.3942 | 1150 | 0.0 | - |
| 8.7591 | 1200 | 0.0 | - |
| 9.1241 | 1250 | 0.0 | - |
| 9.4891 | 1300 | 0.0 | - |
| 9.8540 | 1350 | 0.0 | - |
| 10.2190 | 1400 | 0.0 | - |
| 10.5839 | 1450 | 0.0 | - |
| 10.9489 | 1500 | 0.0 | - |
| 11.3139 | 1550 | 0.0 | - |
| 11.6788 | 1600 | 0.0 | - |
| 12.0438 | 1650 | 0.0 | - |
| 12.4088 | 1700 | 0.0 | - |
| 12.7737 | 1750 | 0.0 | - |
| 13.1387 | 1800 | 0.0 | - |
| 13.5036 | 1850 | 0.0 | - |
| 13.8686 | 1900 | 0.0 | - |
| 14.2336 | 1950 | 0.0 | - |
| 14.5985 | 2000 | 0.0 | - |
| 14.9635 | 2050 | 0.0 | - |
| 15.3285 | 2100 | 0.0 | - |
| 15.6934 | 2150 | 0.0 | - |
| 16.0584 | 2200 | 0.0 | - |
| 16.4234 | 2250 | 0.0 | - |
| 16.7883 | 2300 | 0.0 | - |
| 17.1533 | 2350 | 0.0 | - |
| 17.5182 | 2400 | 0.0 | - |
| 17.8832 | 2450 | 0.0 | - |
| 18.2482 | 2500 | 0.0 | - |
| 18.6131 | 2550 | 0.0 | - |
| 18.9781 | 2600 | 0.0 | - |
| 19.3431 | 2650 | 0.0 | - |
| 19.7080 | 2700 | 0.0 | - |
| 20.0730 | 2750 | 0.0 | - |
| 20.4380 | 2800 | 0.0 | - |
| 20.8029 | 2850 | 0.0 | - |
| 21.1679 | 2900 | 0.0 | - |
| 21.5328 | 2950 | 0.0 | - |
| 21.8978 | 3000 | 0.0 | - |
| 22.2628 | 3050 | 0.0 | - |
| 22.6277 | 3100 | 0.0 | - |
| 22.9927 | 3150 | 0.0 | - |
| 23.3577 | 3200 | 0.0 | - |
| 23.7226 | 3250 | 0.0 | - |
| 24.0876 | 3300 | 0.0 | - |
| 24.4526 | 3350 | 0.0 | - |
| 24.8175 | 3400 | 0.0 | - |
| 25.1825 | 3450 | 0.0 | - |
| 25.5474 | 3500 | 0.0 | - |
| 25.9124 | 3550 | 0.0 | - |
| 26.2774 | 3600 | 0.0 | - |
| 26.6423 | 3650 | 0.0 | - |
| 27.0073 | 3700 | 0.0 | - |
| 27.3723 | 3750 | 0.0 | - |
| 27.7372 | 3800 | 0.0 | - |
| 28.1022 | 3850 | 0.0 | - |
| 28.4672 | 3900 | 0.0 | - |
| 28.8321 | 3950 | 0.0 | - |
| 29.1971 | 4000 | 0.0 | - |
| 29.5620 | 4050 | 0.0 | - |
| 29.9270 | 4100 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |