Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +295 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- setfit
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- text-classification
|
| 6 |
+
- generated_from_setfit_trainer
|
| 7 |
+
widget:
|
| 8 |
+
- text: 스타 더프로페셔널 축구공 5호 SB3015 스포츠/레저>축구>축구공
|
| 9 |
+
- text: 미즈노 미즈노 스피드 마하 2 주니어 런닝화 K1GC2222-51 스포츠/레저>축구>축구화
|
| 10 |
+
- text: 스타 풋살공 매치업 접착구 4호 스쿠알로 공가방 스쿠알로 펌프 FB514TB 스포츠/레저>축구>축구공
|
| 11 |
+
- text: 타비오 TABIO 축구 발가락 양말 풋살 양말 숏 그립 삭스 스포츠/레저>축구>축구양말
|
| 12 |
+
- text: 스타 매니아 풋살공 FB61 볼 축구공 싸커 피구 발야구 WBA134E 스포츠/레저>축구>축구공
|
| 13 |
+
metrics:
|
| 14 |
+
- accuracy
|
| 15 |
+
pipeline_tag: text-classification
|
| 16 |
+
library_name: setfit
|
| 17 |
+
inference: true
|
| 18 |
+
base_model: mini1013/master_domain
|
| 19 |
+
model-index:
|
| 20 |
+
- name: SetFit with mini1013/master_domain
|
| 21 |
+
results:
|
| 22 |
+
- task:
|
| 23 |
+
type: text-classification
|
| 24 |
+
name: Text Classification
|
| 25 |
+
dataset:
|
| 26 |
+
name: Unknown
|
| 27 |
+
type: unknown
|
| 28 |
+
split: test
|
| 29 |
+
metrics:
|
| 30 |
+
- type: accuracy
|
| 31 |
+
value: 1.0
|
| 32 |
+
name: Accuracy
|
| 33 |
+
---
|
| 34 |
+
|
| 35 |
+
# SetFit with mini1013/master_domain
|
| 36 |
+
|
| 37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
| 38 |
+
|
| 39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
| 40 |
+
|
| 41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
| 42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
| 43 |
+
|
| 44 |
+
## Model Details
|
| 45 |
+
|
| 46 |
+
### Model Description
|
| 47 |
+
- **Model Type:** SetFit
|
| 48 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
| 49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
| 50 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 51 |
+
- **Number of Classes:** 10 classes
|
| 52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 53 |
+
<!-- - **Language:** Unknown -->
|
| 54 |
+
<!-- - **License:** Unknown -->
|
| 55 |
+
|
| 56 |
+
### Model Sources
|
| 57 |
+
|
| 58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
| 59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
| 60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 61 |
+
|
| 62 |
+
### Model Labels
|
| 63 |
+
| Label | Examples |
|
| 64 |
+
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 65 |
+
| 9.0 | <ul><li>'엄브로 풋살화 주니어 엑셀레이터 사라 WIDE IN UF2V02W 스포츠/레저>축구>풋살화'</li><li>'푸마 퓨처 7 플레이 TT V 주니어 10774001 스포츠/레저>축구>풋살화'</li><li>'아동 키즈 주니어 풋살화 아식스 1154A090 011 스포츠/레저>축구>풋살화'</li></ul> |
|
| 66 |
+
| 6.0 | <ul><li>'22-23시즌 파리생제르망 메시유니폼 네이마르 음바페 아동용 성인용 유소년 축구유니폼 키즈 PSG 스포츠/레저>축구>축구의류'</li><li>'토트넘 유니폼 어웨이 축구유니폼 반팔 어센틱 스포츠/레저>축구>축구의류'</li><li>'미즈노 베이직 디자인 남여공용 빅로고 라운드넥 피스테 3C 그린 32YE3020 스포츠/레저>축구>축구의류'</li></ul> |
|
| 67 |
+
| 5.0 | <ul><li>'바주카골 고급 팝업 골대 충격흡수 접이식 휴대용 풋살 동호회 학교 체육 튼튼한 교구 스포츠/레저>축구>축구연습용품'</li><li>'프로맥스 풋살골대 축구 미니게임 훈련 골대 6300TA2 스포츠/레저>축구>축구연습용품'</li><li>'축구 접시콘 스포츠/레저>축구>축구연습용품'</li></ul> |
|
| 68 |
+
| 2.0 | <ul><li>'풋살공 게임볼 4호 풋살볼 풋살 축구용품 스타 축구 FB52405 스포츠/레저>축구>축구공'</li><li>'스타 축구공 더 폴라리스 2000 4호 흰색노랑색 SB234 스포츠/레저>축구>축구공'</li><li>'키카 이글200 축구공 그린 KFS-N102 스포츠/레저>축구>축구공'</li></ul> |
|
| 69 |
+
| 8.0 | <ul><li>'미즈노 다이나팩 모렐리아 2 프로 AS 풋살화 형광 GD241445 270 스포츠/레저>축구>축구화'</li><li>'미즈노 축구화 모렐리아 네오 3 프로 MD P1GA238304 스포츠/레저>축구>축구화'</li><li>'아디다스 코파 센스 1 HG 축구화 FZ3712 스포츠/레저>축구>��구화'</li></ul> |
|
| 70 |
+
| 3.0 | <ul><li>'PARIS SAINT-GERMAIN 비밀 파리생제르망 신가드 S M L SN-01 스포츠/레저>축구>축구보호대'</li><li>'미즈노 축구용품 신가드 제로글라이드 정강이보호대 스포츠/레저>축구>축구보호대'</li><li>'풋볼몬스터 신가드 슬리브 2p 정강이보호대 다리보호대 스포츠/레저>축구>축구보호대'</li></ul> |
|
| 71 |
+
| 1.0 | <ul><li>'TOP셀러 더블백 더플백 헬스 헬스장 망치 가방 짐백 축구 복싱 운동 가방 스포츠/레저>축구>축구가방>필드용'</li><li>'디아도라 테니스 보스턴백 OFF 스포츠/레저>축구>축구가방>필드용'</li><li>'스포츠트라이브 짐백 축구공가방 공가방 신발주머니 스포츠/레저>축구>축구가방>슈즈백'</li></ul> |
|
| 72 |
+
| 4.0 | <ul><li>'성인용 논슬립 양말 스포츠/레저>축구>축구양말'</li><li>'훌리건 싱글 논슬립 스타킹 hss001whns2 축구 양말 스포츠/레저>축구>축구양말'</li><li>'아디다스 성인 어른 축구화 풋살 양말 스타킹 260 남성 장목 양발 경기 남자 삭스 스포츠/레저>축구>축구양말'</li></ul> |
|
| 73 |
+
| 0.0 | <ul><li>'동호회 체육대회 축구 심판 접이식 수첩 경고카드 연필 심판용품 스포츠/레저>축구>기타축구용품'</li><li>'볼 트래핑 축구 연습 리프팅 연습 2호 5호 어린이 축구교실 풋살 트레인 훈련 스포츠/레저>축구>기타축구용품'</li><li>'선수교체판 번호사인 스포츠/레저>축구>기타축구용품'</li></ul> |
|
| 74 |
+
| 7.0 | <ul><li>'미즈노 모렐리아 축구 풋살 겨울 방한 남성 필드 장갑 스포츠/레저>축구>축구장갑'</li><li>'나이키 매치 FA20 골키퍼장갑 CQ7799-637 스포츠/레저>축구>축구장갑'</li><li>'푸마 퓨쳐 얼티메이트 NC 골키퍼장갑 04192301 스포츠/레저>축구>축구장갑'</li></ul> |
|
| 75 |
+
|
| 76 |
+
## Evaluation
|
| 77 |
+
|
| 78 |
+
### Metrics
|
| 79 |
+
| Label | Accuracy |
|
| 80 |
+
|:--------|:---------|
|
| 81 |
+
| **all** | 1.0 |
|
| 82 |
+
|
| 83 |
+
## Uses
|
| 84 |
+
|
| 85 |
+
### Direct Use for Inference
|
| 86 |
+
|
| 87 |
+
First install the SetFit library:
|
| 88 |
+
|
| 89 |
+
```bash
|
| 90 |
+
pip install setfit
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
Then you can load this model and run inference.
|
| 94 |
+
|
| 95 |
+
```python
|
| 96 |
+
from setfit import SetFitModel
|
| 97 |
+
|
| 98 |
+
# Download from the 🤗 Hub
|
| 99 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_sl27")
|
| 100 |
+
# Run inference
|
| 101 |
+
preds = model("스타 더프로페셔널 축구공 5호 SB3015 스포츠/레저>축구>축구공")
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
<!--
|
| 105 |
+
### Downstream Use
|
| 106 |
+
|
| 107 |
+
*List how someone could finetune this model on their own dataset.*
|
| 108 |
+
-->
|
| 109 |
+
|
| 110 |
+
<!--
|
| 111 |
+
### Out-of-Scope Use
|
| 112 |
+
|
| 113 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 114 |
+
-->
|
| 115 |
+
|
| 116 |
+
<!--
|
| 117 |
+
## Bias, Risks and Limitations
|
| 118 |
+
|
| 119 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 120 |
+
-->
|
| 121 |
+
|
| 122 |
+
<!--
|
| 123 |
+
### Recommendations
|
| 124 |
+
|
| 125 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 126 |
+
-->
|
| 127 |
+
|
| 128 |
+
## Training Details
|
| 129 |
+
|
| 130 |
+
### Training Set Metrics
|
| 131 |
+
| Training set | Min | Median | Max |
|
| 132 |
+
|:-------------|:----|:-------|:----|
|
| 133 |
+
| Word count | 2 | 8.7243 | 20 |
|
| 134 |
+
|
| 135 |
+
| Label | Training Sample Count |
|
| 136 |
+
|:------|:----------------------|
|
| 137 |
+
| 0.0 | 70 |
|
| 138 |
+
| 1.0 | 70 |
|
| 139 |
+
| 2.0 | 70 |
|
| 140 |
+
| 3.0 | 70 |
|
| 141 |
+
| 4.0 | 70 |
|
| 142 |
+
| 5.0 | 70 |
|
| 143 |
+
| 6.0 | 70 |
|
| 144 |
+
| 7.0 | 70 |
|
| 145 |
+
| 8.0 | 70 |
|
| 146 |
+
| 9.0 | 70 |
|
| 147 |
+
|
| 148 |
+
### Training Hyperparameters
|
| 149 |
+
- batch_size: (256, 256)
|
| 150 |
+
- num_epochs: (30, 30)
|
| 151 |
+
- max_steps: -1
|
| 152 |
+
- sampling_strategy: oversampling
|
| 153 |
+
- num_iterations: 50
|
| 154 |
+
- body_learning_rate: (2e-05, 1e-05)
|
| 155 |
+
- head_learning_rate: 0.01
|
| 156 |
+
- loss: CosineSimilarityLoss
|
| 157 |
+
- distance_metric: cosine_distance
|
| 158 |
+
- margin: 0.25
|
| 159 |
+
- end_to_end: False
|
| 160 |
+
- use_amp: False
|
| 161 |
+
- warmup_proportion: 0.1
|
| 162 |
+
- l2_weight: 0.01
|
| 163 |
+
- seed: 42
|
| 164 |
+
- eval_max_steps: -1
|
| 165 |
+
- load_best_model_at_end: False
|
| 166 |
+
|
| 167 |
+
### Training Results
|
| 168 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
| 169 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
| 170 |
+
| 0.0073 | 1 | 0.4831 | - |
|
| 171 |
+
| 0.3650 | 50 | 0.4992 | - |
|
| 172 |
+
| 0.7299 | 100 | 0.3805 | - |
|
| 173 |
+
| 1.0949 | 150 | 0.1114 | - |
|
| 174 |
+
| 1.4599 | 200 | 0.0275 | - |
|
| 175 |
+
| 1.8248 | 250 | 0.0177 | - |
|
| 176 |
+
| 2.1898 | 300 | 0.0104 | - |
|
| 177 |
+
| 2.5547 | 350 | 0.0014 | - |
|
| 178 |
+
| 2.9197 | 400 | 0.0001 | - |
|
| 179 |
+
| 3.2847 | 450 | 0.0001 | - |
|
| 180 |
+
| 3.6496 | 500 | 0.0001 | - |
|
| 181 |
+
| 4.0146 | 550 | 0.0001 | - |
|
| 182 |
+
| 4.3796 | 600 | 0.0 | - |
|
| 183 |
+
| 4.7445 | 650 | 0.0 | - |
|
| 184 |
+
| 5.1095 | 700 | 0.0 | - |
|
| 185 |
+
| 5.4745 | 750 | 0.0 | - |
|
| 186 |
+
| 5.8394 | 800 | 0.0 | - |
|
| 187 |
+
| 6.2044 | 850 | 0.0 | - |
|
| 188 |
+
| 6.5693 | 900 | 0.0 | - |
|
| 189 |
+
| 6.9343 | 950 | 0.0 | - |
|
| 190 |
+
| 7.2993 | 1000 | 0.0 | - |
|
| 191 |
+
| 7.6642 | 1050 | 0.0 | - |
|
| 192 |
+
| 8.0292 | 1100 | 0.0 | - |
|
| 193 |
+
| 8.3942 | 1150 | 0.0 | - |
|
| 194 |
+
| 8.7591 | 1200 | 0.0 | - |
|
| 195 |
+
| 9.1241 | 1250 | 0.0 | - |
|
| 196 |
+
| 9.4891 | 1300 | 0.0 | - |
|
| 197 |
+
| 9.8540 | 1350 | 0.0 | - |
|
| 198 |
+
| 10.2190 | 1400 | 0.0 | - |
|
| 199 |
+
| 10.5839 | 1450 | 0.0 | - |
|
| 200 |
+
| 10.9489 | 1500 | 0.0 | - |
|
| 201 |
+
| 11.3139 | 1550 | 0.0 | - |
|
| 202 |
+
| 11.6788 | 1600 | 0.0 | - |
|
| 203 |
+
| 12.0438 | 1650 | 0.0 | - |
|
| 204 |
+
| 12.4088 | 1700 | 0.0 | - |
|
| 205 |
+
| 12.7737 | 1750 | 0.0 | - |
|
| 206 |
+
| 13.1387 | 1800 | 0.0 | - |
|
| 207 |
+
| 13.5036 | 1850 | 0.0 | - |
|
| 208 |
+
| 13.8686 | 1900 | 0.0 | - |
|
| 209 |
+
| 14.2336 | 1950 | 0.0 | - |
|
| 210 |
+
| 14.5985 | 2000 | 0.0 | - |
|
| 211 |
+
| 14.9635 | 2050 | 0.0 | - |
|
| 212 |
+
| 15.3285 | 2100 | 0.0 | - |
|
| 213 |
+
| 15.6934 | 2150 | 0.0 | - |
|
| 214 |
+
| 16.0584 | 2200 | 0.0 | - |
|
| 215 |
+
| 16.4234 | 2250 | 0.0 | - |
|
| 216 |
+
| 16.7883 | 2300 | 0.0 | - |
|
| 217 |
+
| 17.1533 | 2350 | 0.0 | - |
|
| 218 |
+
| 17.5182 | 2400 | 0.0 | - |
|
| 219 |
+
| 17.8832 | 2450 | 0.0 | - |
|
| 220 |
+
| 18.2482 | 2500 | 0.0 | - |
|
| 221 |
+
| 18.6131 | 2550 | 0.0 | - |
|
| 222 |
+
| 18.9781 | 2600 | 0.0 | - |
|
| 223 |
+
| 19.3431 | 2650 | 0.0 | - |
|
| 224 |
+
| 19.7080 | 2700 | 0.0 | - |
|
| 225 |
+
| 20.0730 | 2750 | 0.0 | - |
|
| 226 |
+
| 20.4380 | 2800 | 0.0 | - |
|
| 227 |
+
| 20.8029 | 2850 | 0.0 | - |
|
| 228 |
+
| 21.1679 | 2900 | 0.0 | - |
|
| 229 |
+
| 21.5328 | 2950 | 0.0 | - |
|
| 230 |
+
| 21.8978 | 3000 | 0.0 | - |
|
| 231 |
+
| 22.2628 | 3050 | 0.0 | - |
|
| 232 |
+
| 22.6277 | 3100 | 0.0 | - |
|
| 233 |
+
| 22.9927 | 3150 | 0.0 | - |
|
| 234 |
+
| 23.3577 | 3200 | 0.0 | - |
|
| 235 |
+
| 23.7226 | 3250 | 0.0 | - |
|
| 236 |
+
| 24.0876 | 3300 | 0.0 | - |
|
| 237 |
+
| 24.4526 | 3350 | 0.0 | - |
|
| 238 |
+
| 24.8175 | 3400 | 0.0 | - |
|
| 239 |
+
| 25.1825 | 3450 | 0.0 | - |
|
| 240 |
+
| 25.5474 | 3500 | 0.0 | - |
|
| 241 |
+
| 25.9124 | 3550 | 0.0 | - |
|
| 242 |
+
| 26.2774 | 3600 | 0.0 | - |
|
| 243 |
+
| 26.6423 | 3650 | 0.0 | - |
|
| 244 |
+
| 27.0073 | 3700 | 0.0 | - |
|
| 245 |
+
| 27.3723 | 3750 | 0.0 | - |
|
| 246 |
+
| 27.7372 | 3800 | 0.0 | - |
|
| 247 |
+
| 28.1022 | 3850 | 0.0 | - |
|
| 248 |
+
| 28.4672 | 3900 | 0.0 | - |
|
| 249 |
+
| 28.8321 | 3950 | 0.0 | - |
|
| 250 |
+
| 29.1971 | 4000 | 0.0 | - |
|
| 251 |
+
| 29.5620 | 4050 | 0.0 | - |
|
| 252 |
+
| 29.9270 | 4100 | 0.0 | - |
|
| 253 |
+
|
| 254 |
+
### Framework Versions
|
| 255 |
+
- Python: 3.10.12
|
| 256 |
+
- SetFit: 1.1.0
|
| 257 |
+
- Sentence Transformers: 3.3.1
|
| 258 |
+
- Transformers: 4.44.2
|
| 259 |
+
- PyTorch: 2.2.0a0+81ea7a4
|
| 260 |
+
- Datasets: 3.2.0
|
| 261 |
+
- Tokenizers: 0.19.1
|
| 262 |
+
|
| 263 |
+
## Citation
|
| 264 |
+
|
| 265 |
+
### BibTeX
|
| 266 |
+
```bibtex
|
| 267 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
| 268 |
+
doi = {10.48550/ARXIV.2209.11055},
|
| 269 |
+
url = {https://arxiv.org/abs/2209.11055},
|
| 270 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
| 271 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 272 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
| 273 |
+
publisher = {arXiv},
|
| 274 |
+
year = {2022},
|
| 275 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
| 276 |
+
}
|
| 277 |
+
```
|
| 278 |
+
|
| 279 |
+
<!--
|
| 280 |
+
## Glossary
|
| 281 |
+
|
| 282 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 283 |
+
-->
|
| 284 |
+
|
| 285 |
+
<!--
|
| 286 |
+
## Model Card Authors
|
| 287 |
+
|
| 288 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 289 |
+
-->
|
| 290 |
+
|
| 291 |
+
<!--
|
| 292 |
+
## Model Card Contact
|
| 293 |
+
|
| 294 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 295 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "mini1013/master_item_sl_org_gtcate",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"RobertaModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"classifier_dropout": null,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"gradient_checkpointing": false,
|
| 11 |
+
"hidden_act": "gelu",
|
| 12 |
+
"hidden_dropout_prob": 0.1,
|
| 13 |
+
"hidden_size": 768,
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 3072,
|
| 16 |
+
"layer_norm_eps": 1e-05,
|
| 17 |
+
"max_position_embeddings": 514,
|
| 18 |
+
"model_type": "roberta",
|
| 19 |
+
"num_attention_heads": 12,
|
| 20 |
+
"num_hidden_layers": 12,
|
| 21 |
+
"pad_token_id": 1,
|
| 22 |
+
"position_embedding_type": "absolute",
|
| 23 |
+
"tokenizer_class": "BertTokenizer",
|
| 24 |
+
"torch_dtype": "float32",
|
| 25 |
+
"transformers_version": "4.44.2",
|
| 26 |
+
"type_vocab_size": 1,
|
| 27 |
+
"use_cache": true,
|
| 28 |
+
"vocab_size": 32000
|
| 29 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.3.1",
|
| 4 |
+
"transformers": "4.44.2",
|
| 5 |
+
"pytorch": "2.2.0a0+81ea7a4"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
config_setfit.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"labels": null,
|
| 3 |
+
"normalize_embeddings": false
|
| 4 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:23c782a10e711d1fb5cce7626964c815b2d2be5486f5356ee040207c66ff9c78
|
| 3 |
+
size 442494816
|
model_head.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:121fd0291de164749a2c1eac8f3e87937ae4eeefeceb8a2f322eca8dc9707ff3
|
| 3 |
+
size 62407
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "[CLS]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "[SEP]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "[MASK]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "[PAD]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "[SEP]",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "[UNK]",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[CLS]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[PAD]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[SEP]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[UNK]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "[CLS]",
|
| 45 |
+
"clean_up_tokenization_spaces": false,
|
| 46 |
+
"cls_token": "[CLS]",
|
| 47 |
+
"do_basic_tokenize": true,
|
| 48 |
+
"do_lower_case": false,
|
| 49 |
+
"eos_token": "[SEP]",
|
| 50 |
+
"mask_token": "[MASK]",
|
| 51 |
+
"max_length": 512,
|
| 52 |
+
"model_max_length": 512,
|
| 53 |
+
"never_split": null,
|
| 54 |
+
"pad_to_multiple_of": null,
|
| 55 |
+
"pad_token": "[PAD]",
|
| 56 |
+
"pad_token_type_id": 0,
|
| 57 |
+
"padding_side": "right",
|
| 58 |
+
"sep_token": "[SEP]",
|
| 59 |
+
"stride": 0,
|
| 60 |
+
"strip_accents": null,
|
| 61 |
+
"tokenize_chinese_chars": true,
|
| 62 |
+
"tokenizer_class": "BertTokenizer",
|
| 63 |
+
"truncation_side": "right",
|
| 64 |
+
"truncation_strategy": "longest_first",
|
| 65 |
+
"unk_token": "[UNK]"
|
| 66 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|