Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| 4.0 |
|
| 3.0 |
|
| 6.0 |
|
| 0.0 |
|
| 2.0 |
|
| 10.0 |
|
| 12.0 |
|
| 1.0 |
|
| 9.0 |
|
| 11.0 |
|
| 5.0 |
|
| 7.0 |
|
| 8.0 |
|
| Label | Accuracy |
|---|---|
| all | 1.0 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_sl13")
# Run inference
preds = model("태권도 헤드기어 호구 헬멧 보호장비 킥복싱 스포츠/레저>보호용품>머리보호대")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 2 | 9.0551 | 21 |
| Label | Training Sample Count |
|---|---|
| 0.0 | 70 |
| 1.0 | 69 |
| 2.0 | 70 |
| 3.0 | 70 |
| 4.0 | 69 |
| 5.0 | 70 |
| 6.0 | 70 |
| 7.0 | 70 |
| 8.0 | 70 |
| 9.0 | 69 |
| 10.0 | 70 |
| 11.0 | 70 |
| 12.0 | 70 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0056 | 1 | 0.5164 | - |
| 0.2809 | 50 | 0.4982 | - |
| 0.5618 | 100 | 0.3968 | - |
| 0.8427 | 150 | 0.2131 | - |
| 1.1236 | 200 | 0.0919 | - |
| 1.4045 | 250 | 0.031 | - |
| 1.6854 | 300 | 0.0171 | - |
| 1.9663 | 350 | 0.0078 | - |
| 2.2472 | 400 | 0.0066 | - |
| 2.5281 | 450 | 0.0002 | - |
| 2.8090 | 500 | 0.0 | - |
| 3.0899 | 550 | 0.0 | - |
| 3.3708 | 600 | 0.0001 | - |
| 3.6517 | 650 | 0.0 | - |
| 3.9326 | 700 | 0.0 | - |
| 4.2135 | 750 | 0.0 | - |
| 4.4944 | 800 | 0.0001 | - |
| 4.7753 | 850 | 0.0 | - |
| 5.0562 | 900 | 0.0 | - |
| 5.3371 | 950 | 0.0 | - |
| 5.6180 | 1000 | 0.0 | - |
| 5.8989 | 1050 | 0.0002 | - |
| 6.1798 | 1100 | 0.0 | - |
| 6.4607 | 1150 | 0.0 | - |
| 6.7416 | 1200 | 0.0 | - |
| 7.0225 | 1250 | 0.0 | - |
| 7.3034 | 1300 | 0.0 | - |
| 7.5843 | 1350 | 0.0 | - |
| 7.8652 | 1400 | 0.0 | - |
| 8.1461 | 1450 | 0.0 | - |
| 8.4270 | 1500 | 0.0 | - |
| 8.7079 | 1550 | 0.0 | - |
| 8.9888 | 1600 | 0.0 | - |
| 9.2697 | 1650 | 0.0 | - |
| 9.5506 | 1700 | 0.0 | - |
| 9.8315 | 1750 | 0.0 | - |
| 10.1124 | 1800 | 0.0 | - |
| 10.3933 | 1850 | 0.0 | - |
| 10.6742 | 1900 | 0.0 | - |
| 10.9551 | 1950 | 0.0 | - |
| 11.2360 | 2000 | 0.0 | - |
| 11.5169 | 2050 | 0.0 | - |
| 11.7978 | 2100 | 0.0 | - |
| 12.0787 | 2150 | 0.0 | - |
| 12.3596 | 2200 | 0.0 | - |
| 12.6404 | 2250 | 0.0 | - |
| 12.9213 | 2300 | 0.0 | - |
| 13.2022 | 2350 | 0.0 | - |
| 13.4831 | 2400 | 0.0 | - |
| 13.7640 | 2450 | 0.0 | - |
| 14.0449 | 2500 | 0.0 | - |
| 14.3258 | 2550 | 0.0 | - |
| 14.6067 | 2600 | 0.0 | - |
| 14.8876 | 2650 | 0.0 | - |
| 15.1685 | 2700 | 0.0 | - |
| 15.4494 | 2750 | 0.0 | - |
| 15.7303 | 2800 | 0.0 | - |
| 16.0112 | 2850 | 0.0 | - |
| 16.2921 | 2900 | 0.0 | - |
| 16.5730 | 2950 | 0.0 | - |
| 16.8539 | 3000 | 0.0 | - |
| 17.1348 | 3050 | 0.0 | - |
| 17.4157 | 3100 | 0.0 | - |
| 17.6966 | 3150 | 0.0 | - |
| 17.9775 | 3200 | 0.0 | - |
| 18.2584 | 3250 | 0.0 | - |
| 18.5393 | 3300 | 0.0 | - |
| 18.8202 | 3350 | 0.0 | - |
| 19.1011 | 3400 | 0.0 | - |
| 19.3820 | 3450 | 0.0 | - |
| 19.6629 | 3500 | 0.0 | - |
| 19.9438 | 3550 | 0.0 | - |
| 20.2247 | 3600 | 0.0 | - |
| 20.5056 | 3650 | 0.0 | - |
| 20.7865 | 3700 | 0.0 | - |
| 21.0674 | 3750 | 0.0 | - |
| 21.3483 | 3800 | 0.0 | - |
| 21.6292 | 3850 | 0.0 | - |
| 21.9101 | 3900 | 0.0 | - |
| 22.1910 | 3950 | 0.0 | - |
| 22.4719 | 4000 | 0.0 | - |
| 22.7528 | 4050 | 0.0 | - |
| 23.0337 | 4100 | 0.0 | - |
| 23.3146 | 4150 | 0.0 | - |
| 23.5955 | 4200 | 0.0 | - |
| 23.8764 | 4250 | 0.0 | - |
| 24.1573 | 4300 | 0.0 | - |
| 24.4382 | 4350 | 0.0 | - |
| 24.7191 | 4400 | 0.0 | - |
| 25.0 | 4450 | 0.0 | - |
| 25.2809 | 4500 | 0.0 | - |
| 25.5618 | 4550 | 0.0 | - |
| 25.8427 | 4600 | 0.0 | - |
| 26.1236 | 4650 | 0.0 | - |
| 26.4045 | 4700 | 0.0 | - |
| 26.6854 | 4750 | 0.0 | - |
| 26.9663 | 4800 | 0.0 | - |
| 27.2472 | 4850 | 0.0 | - |
| 27.5281 | 4900 | 0.0 | - |
| 27.8090 | 4950 | 0.0 | - |
| 28.0899 | 5000 | 0.0 | - |
| 28.3708 | 5050 | 0.0 | - |
| 28.6517 | 5100 | 0.0 | - |
| 28.9326 | 5150 | 0.0 | - |
| 29.2135 | 5200 | 0.0 | - |
| 29.4944 | 5250 | 0.0 | - |
| 29.7753 | 5300 | 0.0 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}