mini1013 commited on
Commit
fa42359
·
verified ·
1 Parent(s): 83b5c58

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 파고라 테라스 조립식 정자 방갈로 펜션 바베큐장 정원 팔각정 원두막 가구/인테리어>아웃도어가구>정자
9
+ - text: 흔들 의자 회전 공중 바구니 그네 라탄 베란다 로맨 -화이트-팔걸이 있음 가구/인테리어>아웃도어가구>정원그네
10
+ - text: 엔틱 철제 벤치 의자 등받이 정원 수목원 펜션 가구/인테리어>아웃도어가구>야외벤치
11
+ - text: 공원벤치 야외의자 철제 원목 방부목 평벤치 등받이 휴식 긴의자 테이블 세트 옥외용 가구/인테리어>아웃도어가구>야외벤치
12
+ - text: 폴리카보네이트 렉산골판 비가림 지붕자재 차양 FRP 가구/인테리어>아웃도어가구>기타아웃도어가구
13
+ metrics:
14
+ - accuracy
15
+ pipeline_tag: text-classification
16
+ library_name: setfit
17
+ inference: true
18
+ base_model: mini1013/master_domain
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 1.0
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 6 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 2.0 | <ul><li>'최화정 썬베드 피크닉 낮잠 비치체어 캠핑 접이식 휴대용 좌식의자 야외 가구/인테리어>아웃도어가구>야외의자'</li><li>'편의점플라스틱의자비치행사야외캠핑주점테이블파라솔 가구/인테리어>아웃도어가구>야외의자'</li><li>'수영장 카바나 풀파티 펜션 대형 소파 호텔 비치 태닝의자 카페 베드 썬베드 가구/인테리어>아웃도어가구>야외의자'</li></ul> |
66
+ | 0.0 | <ul><li>'아크릴 투명 어닝 고정 테라스 차양 현관 캐노피 베이 가구/인테리어>아웃도어가구>기타아웃도어가구'</li><li>'캐노픽스 렉산 차양 비막이 비가림 어닝 650X2100 가구/인테리어>아웃도어가구>기타아웃도어가구'</li><li>'기와 플라스틱 지붕자재 한옥 옛 중국식 기와 주택 벽장식 가구/인테리어>아웃도어가구>기타아웃도어가구'</li></ul> |
67
+ | 5.0 | <ul><li>'조립식정자 펜션 정원 정자만들기 조립식-3x3 미터 4 기둥 파빌리온 3면 시트 보드 테이블 가구/인테리어>아웃도어가구>정자'</li><li>'조립식평상 테라스 낚시터 세트 옥상 원목 정원 정자 접이식 베란다 피크닉 가구/인테리어>아웃도어가구>정자'</li><li>'시골 원두막 가구/인테리어>아웃도어가구>정자'</li></ul> |
68
+ | 4.0 | <ul><li>'야외 흔들의자 그네 벤치 원목 나무 카페 정원 펜션 가구/인테리어>아웃도어가구>정원그네'</li><li>'야외 흔들 의자 스윙체어 소파 흔들그네 카페 차양 가구/인테리어>아웃도어가구>정원그네'</li><li>'라탄 그네의자 덩굴의자 쿠션 요람 흔들의자 새둥지 가구/인테리어>아웃도어가구>정원그네'</li></ul> |
69
+ | 3.0 | <ul><li>'체어팩토리 마누카 테이블 600 철재 야외 테라스 정원 커피숍 카페 업소용 T5192 가구/인테리어>아웃도어가구>야외테이블'</li><li>'라탄 원목 디자이너 의자 테이블 세트 야외 방수 파 -의자4개 60cm스틸카본원탁조합 가구/인테리어>아웃도어가구>야외테이블'</li><li>'착한테이블 야외용테이블 원목 식탁 편의점 테라스 옥상 데크 4인 야외테이블 원목 농막 마당 테라스 가구/인테리어>아웃도어가구>야외테이블'</li></ul> |
70
+ | 1.0 | <ul><li>'야외 벤치 의자 체어 정원 광장 공원 철제 카페 테라스 야외용 가구/인테리어>아웃도어가구>야외벤치'</li><li>'웨이팅의자 야외벤치 버스 정류장 벤치 카페 공원 투명 휴게실 가구/인테리어>아웃도어가구>야외벤치'</li><li>'야외 벤치 의자 공원 카페 테라스 나무 스테인레스 원목 정류장 평벤치 긴 대기 가구/인테리어>아웃도어가구>야외벤치'</li></ul> |
71
+
72
+ ## Evaluation
73
+
74
+ ### Metrics
75
+ | Label | Accuracy |
76
+ |:--------|:---------|
77
+ | **all** | 1.0 |
78
+
79
+ ## Uses
80
+
81
+ ### Direct Use for Inference
82
+
83
+ First install the SetFit library:
84
+
85
+ ```bash
86
+ pip install setfit
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+
91
+ ```python
92
+ from setfit import SetFitModel
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SetFitModel.from_pretrained("mini1013/master_cate_fi8")
96
+ # Run inference
97
+ preds = model("엔틱 철제 벤치 의자 등받이 정원 수목원 펜션 가구/인테리어>아웃도어가구>야외벤치")
98
+ ```
99
+
100
+ <!--
101
+ ### Downstream Use
102
+
103
+ *List how someone could finetune this model on their own dataset.*
104
+ -->
105
+
106
+ <!--
107
+ ### Out-of-Scope Use
108
+
109
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
110
+ -->
111
+
112
+ <!--
113
+ ## Bias, Risks and Limitations
114
+
115
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
116
+ -->
117
+
118
+ <!--
119
+ ### Recommendations
120
+
121
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
122
+ -->
123
+
124
+ ## Training Details
125
+
126
+ ### Training Set Metrics
127
+ | Training set | Min | Median | Max |
128
+ |:-------------|:----|:--------|:----|
129
+ | Word count | 2 | 10.1333 | 21 |
130
+
131
+ | Label | Training Sample Count |
132
+ |:------|:----------------------|
133
+ | 0.0 | 70 |
134
+ | 1.0 | 70 |
135
+ | 2.0 | 70 |
136
+ | 3.0 | 70 |
137
+ | 4.0 | 70 |
138
+ | 5.0 | 70 |
139
+
140
+ ### Training Hyperparameters
141
+ - batch_size: (256, 256)
142
+ - num_epochs: (30, 30)
143
+ - max_steps: -1
144
+ - sampling_strategy: oversampling
145
+ - num_iterations: 50
146
+ - body_learning_rate: (2e-05, 1e-05)
147
+ - head_learning_rate: 0.01
148
+ - loss: CosineSimilarityLoss
149
+ - distance_metric: cosine_distance
150
+ - margin: 0.25
151
+ - end_to_end: False
152
+ - use_amp: False
153
+ - warmup_proportion: 0.1
154
+ - l2_weight: 0.01
155
+ - seed: 42
156
+ - eval_max_steps: -1
157
+ - load_best_model_at_end: False
158
+
159
+ ### Training Results
160
+ | Epoch | Step | Training Loss | Validation Loss |
161
+ |:-------:|:----:|:-------------:|:---------------:|
162
+ | 0.0120 | 1 | 0.4943 | - |
163
+ | 0.6024 | 50 | 0.497 | - |
164
+ | 1.2048 | 100 | 0.4986 | - |
165
+ | 1.8072 | 150 | 0.158 | - |
166
+ | 2.4096 | 200 | 0.015 | - |
167
+ | 3.0120 | 250 | 0.0001 | - |
168
+ | 3.6145 | 300 | 0.0 | - |
169
+ | 4.2169 | 350 | 0.0 | - |
170
+ | 4.8193 | 400 | 0.0 | - |
171
+ | 5.4217 | 450 | 0.0 | - |
172
+ | 6.0241 | 500 | 0.0 | - |
173
+ | 6.6265 | 550 | 0.0 | - |
174
+ | 7.2289 | 600 | 0.0 | - |
175
+ | 7.8313 | 650 | 0.0 | - |
176
+ | 8.4337 | 700 | 0.0 | - |
177
+ | 9.0361 | 750 | 0.0 | - |
178
+ | 9.6386 | 800 | 0.0 | - |
179
+ | 10.2410 | 850 | 0.0 | - |
180
+ | 10.8434 | 900 | 0.0 | - |
181
+ | 11.4458 | 950 | 0.0 | - |
182
+ | 12.0482 | 1000 | 0.0 | - |
183
+ | 12.6506 | 1050 | 0.0 | - |
184
+ | 13.2530 | 1100 | 0.0 | - |
185
+ | 13.8554 | 1150 | 0.0 | - |
186
+ | 14.4578 | 1200 | 0.0 | - |
187
+ | 15.0602 | 1250 | 0.0 | - |
188
+ | 15.6627 | 1300 | 0.0 | - |
189
+ | 16.2651 | 1350 | 0.0 | - |
190
+ | 16.8675 | 1400 | 0.0 | - |
191
+ | 17.4699 | 1450 | 0.0 | - |
192
+ | 18.0723 | 1500 | 0.0 | - |
193
+ | 18.6747 | 1550 | 0.0 | - |
194
+ | 19.2771 | 1600 | 0.0 | - |
195
+ | 19.8795 | 1650 | 0.0 | - |
196
+ | 20.4819 | 1700 | 0.0 | - |
197
+ | 21.0843 | 1750 | 0.0 | - |
198
+ | 21.6867 | 1800 | 0.0 | - |
199
+ | 22.2892 | 1850 | 0.0 | - |
200
+ | 22.8916 | 1900 | 0.0 | - |
201
+ | 23.4940 | 1950 | 0.0 | - |
202
+ | 24.0964 | 2000 | 0.0 | - |
203
+ | 24.6988 | 2050 | 0.0 | - |
204
+ | 25.3012 | 2100 | 0.0 | - |
205
+ | 25.9036 | 2150 | 0.0 | - |
206
+ | 26.5060 | 2200 | 0.0 | - |
207
+ | 27.1084 | 2250 | 0.0 | - |
208
+ | 27.7108 | 2300 | 0.0 | - |
209
+ | 28.3133 | 2350 | 0.0 | - |
210
+ | 28.9157 | 2400 | 0.0 | - |
211
+ | 29.5181 | 2450 | 0.0 | - |
212
+
213
+ ### Framework Versions
214
+ - Python: 3.10.12
215
+ - SetFit: 1.1.0
216
+ - Sentence Transformers: 3.3.1
217
+ - Transformers: 4.44.2
218
+ - PyTorch: 2.2.0a0+81ea7a4
219
+ - Datasets: 3.2.0
220
+ - Tokenizers: 0.19.1
221
+
222
+ ## Citation
223
+
224
+ ### BibTeX
225
+ ```bibtex
226
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
227
+ doi = {10.48550/ARXIV.2209.11055},
228
+ url = {https://arxiv.org/abs/2209.11055},
229
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
230
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
231
+ title = {Efficient Few-Shot Learning Without Prompts},
232
+ publisher = {arXiv},
233
+ year = {2022},
234
+ copyright = {Creative Commons Attribution 4.0 International}
235
+ }
236
+ ```
237
+
238
+ <!--
239
+ ## Glossary
240
+
241
+ *Clearly define terms in order to be accessible across audiences.*
242
+ -->
243
+
244
+ <!--
245
+ ## Model Card Authors
246
+
247
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
248
+ -->
249
+
250
+ <!--
251
+ ## Model Card Contact
252
+
253
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
254
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_fi",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e85f48320a713671e1a35447fe7fc44f0a6e58d6cff35fc28326f36022e452bb
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fffe934fe97fccb82480849d9c7bd632afac9bbf5ed7d0695afdffc48cc20a95
3
+ size 37767
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff