SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2.0
  • '최화정 썬베드 피크닉 낮잠 비치체어 캠핑 접이식 휴대용 좌식의자 야외 가구/인테리어>아웃도어가구>야외의자'
  • '편의점플라스틱의자비치행사야외캠핑주점테이블파라솔 가구/인테리어>아웃도어가구>야외의자'
  • '수영장 카바나 풀파티 펜션 대형 소파 호텔 비치 태닝의자 카페 베드 썬베드 가구/인테리어>아웃도어가구>야외의자'
0.0
  • '아크릴 투명 어닝 고정 테라스 차양 현관 캐노피 베이 가구/인테리어>아웃도어가구>기타아웃도어가구'
  • '캐노픽스 렉산 차양 비막이 비가림 어닝 650X2100 가구/인테리어>아웃도어가구>기타아웃도어가구'
  • '기와 플라스틱 지붕자재 한옥 옛 중국식 기와 주택 벽장식 가구/인테리어>아웃도어가구>기타아웃도어가구'
5.0
  • '조립식정자 펜션 정원 정자만들기 조립식-3x3 미터 4 기둥 파빌리온 3면 시트 보드 테이블 가구/인테리어>아웃도어가구>정자'
  • '조립식평상 테라스 낚시터 세트 옥상 원목 정원 정자 접이식 베란다 피크닉 가구/인테리어>아웃도어가구>정자'
  • '시골 원두막 가구/인테리어>아웃도어가구>정자'
4.0
  • '야외 흔들의자 그네 벤치 원목 나무 카페 정원 펜션 가구/인테리어>아웃도어가구>정원그네'
  • '야외 흔들 의자 스윙체어 소파 흔들그네 카페 차양 가구/인테리어>아웃도어가구>정원그네'
  • '라탄 그네의자 덩굴의자 쿠션 요람 흔들의자 새둥지 가구/인테리어>아웃도어가구>정원그네'
3.0
  • '체어팩토리 마누카 테이블 600 철재 야외 테라스 정원 커피숍 카페 업소용 T5192 가구/인테리어>아웃도어가구>야외테이블'
  • '라탄 원목 디자이너 의자 테이블 세트 야외 방수 파 -의자4개 60cm스틸카본원탁조합 가구/인테리어>아웃도어가구>야외테이블'
  • '착한테이블 야외용테이블 원목 식탁 편의점 테라스 옥상 데크 4인 야외테이블 원목 농막 마당 테라스 가구/인테리어>아웃도어가구>야외테이블'
1.0
  • '야외 벤치 의자 체어 정원 광장 공원 철제 카페 테라스 야외용 가구/인테리어>아웃도어가구>야외벤치'
  • '웨이팅의자 야외벤치 버스 정류장 벤치 카페 공원 투명 휴게실 가구/인테리어>아웃도어가구>야외벤치'
  • '야외 벤치 의자 공원 카페 테라스 나무 스테인레스 원목 정류장 평벤치 긴 대기 가구/인테리어>아웃도어가구>야외벤치'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fi8")
# Run inference
preds = model("엔틱 철제 벤치 의자 등받이 정원 수목원 펜션 가구/인테리어>아웃도어가구>야외벤치")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 10.1333 21
Label Training Sample Count
0.0 70
1.0 70
2.0 70
3.0 70
4.0 70
5.0 70

Training Hyperparameters

  • batch_size: (256, 256)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 50
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0120 1 0.4943 -
0.6024 50 0.497 -
1.2048 100 0.4986 -
1.8072 150 0.158 -
2.4096 200 0.015 -
3.0120 250 0.0001 -
3.6145 300 0.0 -
4.2169 350 0.0 -
4.8193 400 0.0 -
5.4217 450 0.0 -
6.0241 500 0.0 -
6.6265 550 0.0 -
7.2289 600 0.0 -
7.8313 650 0.0 -
8.4337 700 0.0 -
9.0361 750 0.0 -
9.6386 800 0.0 -
10.2410 850 0.0 -
10.8434 900 0.0 -
11.4458 950 0.0 -
12.0482 1000 0.0 -
12.6506 1050 0.0 -
13.2530 1100 0.0 -
13.8554 1150 0.0 -
14.4578 1200 0.0 -
15.0602 1250 0.0 -
15.6627 1300 0.0 -
16.2651 1350 0.0 -
16.8675 1400 0.0 -
17.4699 1450 0.0 -
18.0723 1500 0.0 -
18.6747 1550 0.0 -
19.2771 1600 0.0 -
19.8795 1650 0.0 -
20.4819 1700 0.0 -
21.0843 1750 0.0 -
21.6867 1800 0.0 -
22.2892 1850 0.0 -
22.8916 1900 0.0 -
23.4940 1950 0.0 -
24.0964 2000 0.0 -
24.6988 2050 0.0 -
25.3012 2100 0.0 -
25.9036 2150 0.0 -
26.5060 2200 0.0 -
27.1084 2250 0.0 -
27.7108 2300 0.0 -
28.3133 2350 0.0 -
28.9157 2400 0.0 -
29.5181 2450 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
779
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mini1013/master_cate_fi8

Base model

klue/roberta-base
Finetuned
(213)
this model

Evaluation results