SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2.0
  • '보약게임 이게 왜 오리너구리, 1개 TS 687769 포레스트 출산/육아 > 교구 > 학습보드게임'
  • '모닝글로리 15000 장기 자석타입 장기알 장기판 폴더형 접이형 보드게임 77 체스 출산/육아 > 교구 > 학습보드게임'
  • '고피쉬 한글3 쉬운 받침 글자 출산/육아 > 교구 > 학습보드게임'
0.0
  • '립프로그 선택 구매 (풀세트 구매시 립프로그 알파벳 카드 27종 ) 2집 (DVD7+CD7+대본6권) 출산/육아 > 교구 > 비디오/DVD'
  • '고교토론,판 출산/육아 > 교구 > 비디오/DVD'
  • '시간의숲 출산/육아 > 교구 > 비디오/DVD'
1.0
  • '초등 비즈 보석십자수 아크릴 키링 가방고리 만들기 10인 지능발달 손작업 협업 어린이집 상품 선택_선인장 출산/육아 > 교구 > 학습교구 > 미술교구'
  • '디즈니 음악이론 1-12권 유아 어린이 피아노 음악 교재 책 디즈니 음악 이론 6 출산/육아 > 교구 > 학습교구 > 기타교구'
  • '무지개롤 / 펠트교구 검정 출산/육아 > 교구 > 학습교구 > 영어교구'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc0")
# Run inference
preds = model("온가족 보드게임 영어 워드온더스트리트 유아교육기관  출산/육아 > 교구 > 학습보드게임")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 7 14.4143 34
Label Training Sample Count
0.0 70
1.0 70
2.0 70

Training Hyperparameters

  • batch_size: (256, 256)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 50
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0238 1 0.4941 -
1.1905 50 0.465 -
2.3810 100 0.0367 -
3.5714 150 0.0 -
4.7619 200 0.0 -
5.9524 250 0.0 -
7.1429 300 0.0 -
8.3333 350 0.0 -
9.5238 400 0.0 -
10.7143 450 0.0 -
11.9048 500 0.0 -
13.0952 550 0.0 -
14.2857 600 0.0 -
15.4762 650 0.0 -
16.6667 700 0.0 -
17.8571 750 0.0 -
19.0476 800 0.0 -
20.2381 850 0.0 -
21.4286 900 0.0 -
22.6190 950 0.0 -
23.8095 1000 0.0 -
25.0 1050 0.0 -
26.1905 1100 0.0 -
27.3810 1150 0.0 -
28.5714 1200 0.0 -
29.7619 1250 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
4
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mini1013/master_cate_bc0

Base model

klue/roberta-base
Finetuned
(213)
this model

Evaluation results