|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: '[헤지스ACC]HJBA3F885BK[13인치 노트북 수납가능][KEVIN]블랙 참장식 크로스 겸용 미니 토트백 에이케이에스앤디 (주) |
|
AK인터넷쇼핑몰' |
|
- text: 마젤란 메신저백 크로스백 슬링백 힙색 힙쌕 학생 여성 남자 캐주얼 크로스 여행용 여권 핸드폰 보조 학원 가방 LKHS-304_B-연핑크(+키홀더) |
|
더블유팝 |
|
- text: 마젤란 메신저백 크로스백 슬링백 힙색 힙쌕 학생 여성 남자 캐주얼 크로스 여행용 여권 핸드폰 보조 학원 가방 ML-1928_연그레이 |
|
더블유팝 |
|
- text: '[갤러리아] JUBA4E021G2 [MATEO] 그레이 로고프린트 숄더백 JUBA4E021G2 [MATEO] 그레이 로고프린트 숄더백 |
|
NS홈쇼핑_NS몰' |
|
- text: '[디스커버리](신세계강남점)[23N] 디스커버리 미니 슬링백 (DXSG0043N) IVD 다크 아이보리_F 주식회사 에스에스지닷컴' |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.8488667448221962 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 9 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 6.0 | <ul><li>'[질스튜어트](광주신세계)블랙 클래식 클러치백 [JUWA2F392BK] 주식회사 에스에스지닷컴'</li><li>'심플 클러치백 EOCFHX257BK/에스콰이아 블랙 롯데쇼핑(주)'</li><li>'[듀퐁] 소프트그레인 파우치 베이지 CG180263CL 베이지 (주)씨제이이엔엠'</li></ul> | |
|
| 3.0 | <ul><li>'엔지니어드가먼츠 블랙 나일론 토트백 23F1H034BLACK 주식회사 어도어럭스'</li><li>'[가이거] 퀼팅 레더 체인 숄더백 (+플랩지갑) 캐러멜 브라운 (주)우리홈쇼핑'</li><li>'토트 브리프 크로스백 FT8570 블랙 글로리홈'</li></ul> | |
|
| 4.0 | <ul><li>'여자캔버스 가방 코디 크로스백 남자에코백 신발 BLUE 고앤런'</li><li>'여학생 에코백 아이보리 가방 남녀공용 캐주얼 쇼퍼백 엘케이엠'</li><li>'패션 에코백 데일리 가방 캐주얼 숄더백 브라운 심정'</li></ul> | |
|
| 7.0 | <ul><li>'[갤러리아] 644040 2BKPI 1000 ONE SIZE 한화갤러리아(주)'</li><li>'[갤러리아] 헤지스핸드백 그린 워싱가죽 크로스 겸용 토트백 HJBA3E301E2(타임월드) 한화갤러리아(주)'</li><li>'[메종키츠네] 로고 프린트 코튼 토트백 블루 LW05102WW0008 BLUE_FREE 신세계몰'</li></ul> | |
|
| 2.0 | <ul><li>'바버 가죽 코팅 서류 가방 브리프 케이스 UBA0004 NAVY 뉴욕트레이딩'</li><li>'[롯데백화점]에스콰이아 23FW 신상 경량 나일론 노트북 수납 남여 데일리 토트 크로스백 EOCFHX258BK 롯데백화점_'</li><li>'22FW 신상 뉴 포멀 슬림 스퀘어 심플 비즈니스 캐주얼 서류가방 ECBFHX227GY 롯데백화점1관'</li></ul> | |
|
| 1.0 | <ul><li>'NATIONALGEOGRAPHIC N225USD340 다이브 플러스 V3 BLACK 240 맥스투'</li><li>'레스포삭 보이저 백팩 경량 나일론 보부상 복조리 가방 7839 플라워 행운샵'</li><li>'레스포삭 보이저 백팩 경량 Voyager Backpack 7839 블랙 하하대행'</li></ul> | |
|
| 0.0 | <ul><li>'[갤러리아] 헤지스핸드백HJBA2F770BK_ 블랙 로고 장식 솔리드 메신져백(타임월드) 한화갤러리아(주)'</li><li>'로아드로아 허쉬 메쉬 포켓 크로스 메신저백 (아이보리) 크로스백 FREE 가방팝'</li><li>'[본사공식] 타프 메신저백 사첼 S EOCBS04 008 롯데아이몰'</li></ul> | |
|
| 5.0 | <ul><li>'팩세이프 가방 GO 크로스바디 백 2.5L / PACSAFE URBAN 도난방지 유럽 해외 여행 등산 슬링백 크로스백 RFID차단 1. 제트 블랙 (JET BLACK) 시계1위팝워치'</li><li>'샨타코[Chantaco] 레더 크로스백 BB NH3271C53N 000/라코스테 롯데쇼핑(주)'</li><li>'팩세이프 가방 GO 크로스바디 백 2.5L / PACSAFE URBAN 도난방지 유럽 해외 여행 등산 슬링백 크로스백 RFID차단 2. 로즈 (ROSE) 시계1위팝워치'</li></ul> | |
|
| 8.0 | <ul><li>'[기회공작소] 데일리 슬링백 크로스 힙색 허리가방 스포츠 등산 힙색 허리색 슬링백 보조가방 글로리커머스'</li><li>'구찌 GG 캔버스 투웨이 밸트백 힙색 630915 KY9KN 9886 쏠나인'</li><li>'벨트형 핸드폰 허리가방 남자 벨트백 세로형 가죽 벨트파우치 지갑 허리벨트케이스 브라운 자주구매'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.8489 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_ac0") |
|
# Run inference |
|
preds = model("[디스커버리](신세계강남점)[23N] 디스커버리 미니 슬링백 (DXSG0043N) IVD 다크 아이보리_F 주식회사 에스에스지닷컴") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 4 | 9.2289 | 29 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 50 | |
|
| 1.0 | 50 | |
|
| 2.0 | 50 | |
|
| 3.0 | 50 | |
|
| 4.0 | 50 | |
|
| 5.0 | 50 | |
|
| 6.0 | 50 | |
|
| 7.0 | 50 | |
|
| 8.0 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0141 | 1 | 0.3958 | - | |
|
| 0.7042 | 50 | 0.3012 | - | |
|
| 1.4085 | 100 | 0.1811 | - | |
|
| 2.1127 | 150 | 0.0599 | - | |
|
| 2.8169 | 200 | 0.0333 | - | |
|
| 3.5211 | 250 | 0.0169 | - | |
|
| 4.2254 | 300 | 0.0005 | - | |
|
| 4.9296 | 350 | 0.0003 | - | |
|
| 5.6338 | 400 | 0.0002 | - | |
|
| 6.3380 | 450 | 0.0003 | - | |
|
| 7.0423 | 500 | 0.0001 | - | |
|
| 7.7465 | 550 | 0.0001 | - | |
|
| 8.4507 | 600 | 0.0001 | - | |
|
| 9.1549 | 650 | 0.0001 | - | |
|
| 9.8592 | 700 | 0.0001 | - | |
|
| 10.5634 | 750 | 0.0 | - | |
|
| 11.2676 | 800 | 0.0001 | - | |
|
| 11.9718 | 850 | 0.0001 | - | |
|
| 12.6761 | 900 | 0.0001 | - | |
|
| 13.3803 | 950 | 0.0 | - | |
|
| 14.0845 | 1000 | 0.0 | - | |
|
| 14.7887 | 1050 | 0.0 | - | |
|
| 15.4930 | 1100 | 0.0 | - | |
|
| 16.1972 | 1150 | 0.0 | - | |
|
| 16.9014 | 1200 | 0.0 | - | |
|
| 17.6056 | 1250 | 0.0 | - | |
|
| 18.3099 | 1300 | 0.0 | - | |
|
| 19.0141 | 1350 | 0.0 | - | |
|
| 19.7183 | 1400 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |