ChatTruth-7B

ChatTruth-7B 在Qwen-VL的基础上,使用精心设计的数据进行了优化训练。与Qwen-VL相比,模型在大分辨率上得到了大幅提升。创新性提出Restore Module使大分辨率计算量大幅减少。

image/png

安装要求 (Requirements)

  • transformers 4.32.0

  • python 3.8 and above

  • pytorch 1.13 and above

  • CUDA 11.4 and above


快速开始 (Quickstart)

from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import torch
torch.manual_seed(1234)
model_path = 'ChatTruth-7B' # your downloaded model path.

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

# use cuda device
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="cuda", trust_remote_code=True).eval()

model.generation_config = GenerationConfig.from_pretrained(model_path, trust_remote_code=True)
model.generation_config.top_p = 0.01

query = tokenizer.from_list_format([
    {'image': 'demo.jpeg'},
    {'text': '图片中的文字是什么'},
])
response, history = model.chat(tokenizer, query=query, history=None)
print(response)

# 昆明太厉害了
Downloads last month
85
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.