llam3-conv-model

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the generator dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 1

Training results

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.2
  • Pytorch 2.4.1
  • Datasets 2.21.0
  • Tokenizers 0.20.1
Downloads last month
17
Safetensors
Model size
8.03B params
Tensor type
FP16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for miladalsh/llam3-conv-model

Adapter
(537)
this model