ft_rugec_Ro_vRank1
This model is a fine-tuned version of mika5883/pretrain_rugec_msu on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2420
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 120
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7554 | 0.2568 | 10 | 0.2400 |
0.3326 | 0.5136 | 20 | 0.2136 |
0.268 | 0.7705 | 30 | 0.2006 |
0.2506 | 1.0514 | 40 | 0.2076 |
0.1641 | 1.3082 | 50 | 0.2129 |
0.158 | 1.5650 | 60 | 0.2148 |
0.1398 | 1.8218 | 70 | 0.2226 |
0.1217 | 2.1027 | 80 | 0.2195 |
0.1 | 2.3596 | 90 | 0.2344 |
0.0864 | 2.6164 | 100 | 0.2318 |
0.0863 | 2.8732 | 110 | 0.2418 |
0.0738 | 3.1541 | 120 | 0.2420 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.1
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support