Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
---
|
2 |
language:
|
3 |
- en
|
4 |
-
datasets:
|
5 |
tags:
|
6 |
- speech
|
7 |
---
|
@@ -29,13 +28,13 @@ The model is fine-tuned on the [LibriMix dataset](https://github.com/JorisCos/Li
|
|
29 |
# Usage
|
30 |
## Speaker Diarization
|
31 |
```python
|
32 |
-
from transformers import Wav2Vec2FeatureExtractor,
|
33 |
from datasets import load_dataset
|
34 |
import torch
|
35 |
|
36 |
dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
|
37 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/wavlm-base-sd')
|
38 |
-
model =
|
39 |
|
40 |
# audio file is decoded on the fly
|
41 |
inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt")
|
|
|
1 |
---
|
2 |
language:
|
3 |
- en
|
|
|
4 |
tags:
|
5 |
- speech
|
6 |
---
|
|
|
28 |
# Usage
|
29 |
## Speaker Diarization
|
30 |
```python
|
31 |
+
from transformers import Wav2Vec2FeatureExtractor, WavLMForAudioFrameClassification
|
32 |
from datasets import load_dataset
|
33 |
import torch
|
34 |
|
35 |
dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
|
36 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/wavlm-base-sd')
|
37 |
+
model = WavLMForAudioFrameClassification.from_pretrained('microsoft/wavlm-base-sd')
|
38 |
|
39 |
# audio file is decoded on the fly
|
40 |
inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt")
|