anton-l HF staff commited on
Commit
f457935
1 Parent(s): 3e518c2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -0
README.md CHANGED
@@ -32,13 +32,16 @@ The model is fine-tuned on the [LibriMix dataset](https://github.com/JorisCos/Li
32
  from transformers import Wav2Vec2FeatureExtractor, UniSpeechSatForAudioFrameClassification
33
  from datasets import load_dataset
34
  import torch
 
35
  dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
36
  feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/wavlm-base-sd')
37
  model = UniSpeechSatForAudioFrameClassification.from_pretrained('microsoft/wavlm-base-sd')
 
38
  # audio file is decoded on the fly
39
  inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt")
40
  logits = model(**inputs).logits
41
  probabilities = torch.sigmoid(logits[0])
 
42
  # labels is a one-hot array of shape (num_frames, num_speakers)
43
  labels = (probabilities > 0.5).long()
44
  ```
 
32
  from transformers import Wav2Vec2FeatureExtractor, UniSpeechSatForAudioFrameClassification
33
  from datasets import load_dataset
34
  import torch
35
+
36
  dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
37
  feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/wavlm-base-sd')
38
  model = UniSpeechSatForAudioFrameClassification.from_pretrained('microsoft/wavlm-base-sd')
39
+
40
  # audio file is decoded on the fly
41
  inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt")
42
  logits = model(**inputs).logits
43
  probabilities = torch.sigmoid(logits[0])
44
+
45
  # labels is a one-hot array of shape (num_frames, num_speakers)
46
  labels = (probabilities > 0.5).long()
47
  ```