# Fast-Inference with Ctranslate2

Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.

quantized version of OpenAssistant/stablelm-7b-sft-v7-epoch-3

pip install hf-hub-ctranslate2>=2.0.8 ctranslate2>=3.14.0

Converted on 2023-06-02 using

ct2-transformers-converter --model OpenAssistant/stablelm-7b-sft-v7-epoch-3 --output_dir /home/michael/tmp-ct2fast-stablelm-7b-sft-v7-epoch-3 --force --copy_files tokenizer.json README.md tokenizer_config.json generation_config.json special_tokens_map.json .gitattributes --quantization int8_float16 --trust_remote_code

Checkpoint compatible to ctranslate2>=3.14.0 and hf-hub-ctranslate2>=2.0.8

  • compute_type=int8_float16 for device="cuda"
  • compute_type=int8 for device="cpu"
from hf_hub_ctranslate2 import TranslatorCT2fromHfHub, GeneratorCT2fromHfHub
from transformers import AutoTokenizer

model_name = "michaelfeil/ct2fast-stablelm-7b-sft-v7-epoch-3"
# use either TranslatorCT2fromHfHub or GeneratorCT2fromHfHub here, depending on model.
model = GeneratorCT2fromHfHub(
        # load in int8 on CUDA
        model_name_or_path=model_name,
        device="cuda",
        compute_type="int8_float16",
        # tokenizer=AutoTokenizer.from_pretrained("OpenAssistant/stablelm-7b-sft-v7-epoch-3")
)
outputs = model.generate(
    text=["def fibonnaci(", "User: How are you doing? Bot:"],
    max_length=64,
    include_prompt_in_result=False
)
print(outputs)

Licence and other remarks:

This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.

Original description

Open-Assistant StableLM-7B SFT-7 Model

This is the 7th iteration English supervised-fine-tuning (SFT) model of the Open-Assistant project. It is based on a StableLM 7B that was fine-tuned on human demonstrations of assistant conversations collected through the https://open-assistant.io/ human feedback web app before April 12, 2023.

Model Details

Prompting

Two special tokens are used to mark the beginning of user and assistant turns: <|prompter|> and <|assistant|>. Each turn ends with a <|endoftext|> token.

Input prompt example:

<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>

The input ends with the <|assistant|> token to signal that the model should start generating the assistant reply.

Dev Details

command: deepspeed trainer_sft.py --configs defaults stablelm-7b oasst-mix --cache_dir /home/ubuntu/data_cache --output_dir .saved/stable-lm-7b-1 --num_train_epochs 4 --deepspeed

data:

oasst-mix:
  save_strategy: epoch
  sort_by_length: false
  use_custom_sampler: false
  datasets:
    - oasst_export:
        lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
        input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
    - vicuna:
        val_split: 0.05
        max_val_set: 800
        fraction: 1.0
    - dolly15k:
        val_split: 0.05
        max_val_set: 300
    - grade_school_math_instructions:
        val_split: 0.05
    - code_alpaca:
        val_split: 0.05
        max_val_set: 250

stablelm:

stablelm-7b:
  dtype: fp16
  log_dir: stablelm_log_7b
  model_name: stabilityai/stablelm-base-alpha-7b
  output_dir: stablelm_7b
  max_length: 4096
  warmup_steps: 100
  gradient_checkpointing: true
  gradient_accumulation_steps: 2
  per_device_train_batch_size: 4
  per_device_eval_batch_size: 4
  eval_steps: 100
  save_steps: 500
  num_train_epochs: 4
  save_total_limit: 4
  use_flash_attention: true

zero config:

{
  "fp16": {
    "enabled": "auto",
    "loss_scale": 0,
    "loss_scale_window": 1000,
    "initial_scale_power": 16,
    "hysteresis": 2,
    "min_loss_scale": 1
  },
  "bf16": {
    "enabled": "auto"
  },
  "optimizer": {
    "type": "AdamW",
    "params": {
      "lr": "auto",
      "betas": "auto",
      "eps": "auto",
      "weight_decay": "auto"
    }
  },
  "scheduler": {
    "type": "WarmupDecayLR",
    "params": {
      "warmup_min_lr": "auto",
      "warmup_max_lr": "auto",
      "warmup_num_steps": "auto",
      "total_num_steps": "auto"
    }
  },
  "zero_optimization": {
    "stage": 2,
    "allgather_partitions": true,
    "allgather_bucket_size": 1e9,
    "overlap_comm": false,
    "reduce_scatter": true,
    "reduce_bucket_size": 1e9,
    "contiguous_gradients": true
  },
  "gradient_accumulation_steps": "auto",
  "gradient_clipping": "auto",
  "steps_per_print": 2000,
  "train_batch_size": "auto",
  "train_micro_batch_size_per_gpu": "auto",
  "wall_clock_breakdown": false
}
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.