mhdiqbalpradipta's picture
End of training
0faf05c verified
metadata
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: minang_food_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9277777777777778

minang_food_classification

This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7860
  • Accuracy: 0.9278

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3423 1.0 45 1.3263 0.7889
1.2638 2.0 90 1.2436 0.8278
1.2055 3.0 135 1.2503 0.8
1.14 4.0 180 1.1486 0.85
1.0908 5.0 225 1.0427 0.8778
1.0258 6.0 270 1.0210 0.8333
0.9776 7.0 315 0.9694 0.8722
0.9306 8.0 360 0.9379 0.8833
0.8985 9.0 405 0.9150 0.8778
0.8624 10.0 450 0.8884 0.8611
0.8243 11.0 495 0.8118 0.9222
0.8017 12.0 540 0.8394 0.8833
0.797 13.0 585 0.7761 0.9056
0.7765 14.0 630 0.7891 0.9111
0.7834 15.0 675 0.7945 0.8889
0.7483 16.0 720 0.7801 0.9
0.74 17.0 765 0.7524 0.9167
0.7315 18.0 810 0.7655 0.9111
0.7468 19.0 855 0.7860 0.8833
0.7393 20.0 900 0.7900 0.9056

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1