bert-finetuned-ner / README.md
mhassan101's picture
Training complete
eaf585b verified
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0608
- Precision: 0.9310
- Recall: 0.9487
- F1: 0.9397
- Accuracy: 0.9856
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0766 | 1.0 | 1756 | 0.0853 | 0.9083 | 0.9335 | 0.9207 | 0.9798 |
| 0.0407 | 2.0 | 3512 | 0.0577 | 0.9190 | 0.9472 | 0.9329 | 0.9852 |
| 0.0255 | 3.0 | 5268 | 0.0608 | 0.9310 | 0.9487 | 0.9397 | 0.9856 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2