zhengqilin
add init
1976a91
raw
history blame
6.62 kB
"""
download checkpoints to ./weights beforehand
python scripts/download_pretrained_models.py facelib
python scripts/download_pretrained_models.py CodeFormer
wget 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth'
"""
import tempfile
import cv2
import torch
from torchvision.transforms.functional import normalize
from cog import BasePredictor, Input, Path
from basicsr.utils import imwrite, img2tensor, tensor2img
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.realesrgan_utils import RealESRGANer
from basicsr.utils.registry import ARCH_REGISTRY
from facelib.utils.face_restoration_helper import FaceRestoreHelper
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.device = "cuda:0"
self.bg_upsampler = set_realesrgan()
self.net = ARCH_REGISTRY.get("CodeFormer")(
dim_embd=512,
codebook_size=1024,
n_head=8,
n_layers=9,
connect_list=["32", "64", "128", "256"],
).to(self.device)
ckpt_path = "weights/CodeFormer/codeformer.pth"
checkpoint = torch.load(ckpt_path)[
"params_ema"
] # update file permission if cannot load
self.net.load_state_dict(checkpoint)
self.net.eval()
def predict(
self,
image: Path = Input(description="Input image"),
codeformer_fidelity: float = Input(
default=0.5,
ge=0,
le=1,
description="Balance the quality (lower number) and fidelity (higher number).",
),
background_enhance: bool = Input(
description="Enhance background image with Real-ESRGAN", default=True
),
face_upsample: bool = Input(
description="Upsample restored faces for high-resolution AI-created images",
default=True,
),
upscale: int = Input(
description="The final upsampling scale of the image",
default=2,
),
) -> Path:
"""Run a single prediction on the model"""
# take the default setting for the demo
has_aligned = False
only_center_face = False
draw_box = False
detection_model = "retinaface_resnet50"
self.face_helper = FaceRestoreHelper(
upscale,
face_size=512,
crop_ratio=(1, 1),
det_model=detection_model,
save_ext="png",
use_parse=True,
device=self.device,
)
bg_upsampler = self.bg_upsampler if background_enhance else None
face_upsampler = self.bg_upsampler if face_upsample else None
img = cv2.imread(str(image), cv2.IMREAD_COLOR)
if has_aligned:
# the input faces are already cropped and aligned
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
self.face_helper.cropped_faces = [img]
else:
self.face_helper.read_image(img)
# get face landmarks for each face
num_det_faces = self.face_helper.get_face_landmarks_5(
only_center_face=only_center_face, resize=640, eye_dist_threshold=5
)
print(f"\tdetect {num_det_faces} faces")
# align and warp each face
self.face_helper.align_warp_face()
# face restoration for each cropped face
for idx, cropped_face in enumerate(self.face_helper.cropped_faces):
# prepare data
cropped_face_t = img2tensor(
cropped_face / 255.0, bgr2rgb=True, float32=True
)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)
try:
with torch.no_grad():
output = self.net(
cropped_face_t, w=codeformer_fidelity, adain=True
)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output
torch.cuda.empty_cache()
except Exception as error:
print(f"\tFailed inference for CodeFormer: {error}")
restored_face = tensor2img(
cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
)
restored_face = restored_face.astype("uint8")
self.face_helper.add_restored_face(restored_face)
# paste_back
if not has_aligned:
# upsample the background
if bg_upsampler is not None:
# Now only support RealESRGAN for upsampling background
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
else:
bg_img = None
self.face_helper.get_inverse_affine(None)
# paste each restored face to the input image
if face_upsample and face_upsampler is not None:
restored_img = self.face_helper.paste_faces_to_input_image(
upsample_img=bg_img,
draw_box=draw_box,
face_upsampler=face_upsampler,
)
else:
restored_img = self.face_helper.paste_faces_to_input_image(
upsample_img=bg_img, draw_box=draw_box
)
# save restored img
out_path = Path(tempfile.mkdtemp()) / "output.png"
if not has_aligned and restored_img is not None:
imwrite(restored_img, str(out_path))
return out_path
def imread(img_path):
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def set_realesrgan():
if not torch.cuda.is_available(): # CPU
import warnings
warnings.warn(
"The unoptimized RealESRGAN is slow on CPU. We do not use it. "
"If you really want to use it, please modify the corresponding codes.",
category=RuntimeWarning,
)
bg_upsampler = None
else:
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
bg_upsampler = RealESRGANer(
scale=2,
model_path="./weights/RealESRGAN_x2plus.pth",
model=model,
tile=400,
tile_pad=40,
pre_pad=0,
half=True,
)
return bg_upsampler