File size: 6,617 Bytes
1976a91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
"""
download checkpoints to ./weights beforehand
python scripts/download_pretrained_models.py facelib
python scripts/download_pretrained_models.py CodeFormer
wget 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth'
"""
import tempfile
import cv2
import torch
from torchvision.transforms.functional import normalize
from cog import BasePredictor, Input, Path
from basicsr.utils import imwrite, img2tensor, tensor2img
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.realesrgan_utils import RealESRGANer
from basicsr.utils.registry import ARCH_REGISTRY
from facelib.utils.face_restoration_helper import FaceRestoreHelper
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.device = "cuda:0"
self.bg_upsampler = set_realesrgan()
self.net = ARCH_REGISTRY.get("CodeFormer")(
dim_embd=512,
codebook_size=1024,
n_head=8,
n_layers=9,
connect_list=["32", "64", "128", "256"],
).to(self.device)
ckpt_path = "weights/CodeFormer/codeformer.pth"
checkpoint = torch.load(ckpt_path)[
"params_ema"
] # update file permission if cannot load
self.net.load_state_dict(checkpoint)
self.net.eval()
def predict(
self,
image: Path = Input(description="Input image"),
codeformer_fidelity: float = Input(
default=0.5,
ge=0,
le=1,
description="Balance the quality (lower number) and fidelity (higher number).",
),
background_enhance: bool = Input(
description="Enhance background image with Real-ESRGAN", default=True
),
face_upsample: bool = Input(
description="Upsample restored faces for high-resolution AI-created images",
default=True,
),
upscale: int = Input(
description="The final upsampling scale of the image",
default=2,
),
) -> Path:
"""Run a single prediction on the model"""
# take the default setting for the demo
has_aligned = False
only_center_face = False
draw_box = False
detection_model = "retinaface_resnet50"
self.face_helper = FaceRestoreHelper(
upscale,
face_size=512,
crop_ratio=(1, 1),
det_model=detection_model,
save_ext="png",
use_parse=True,
device=self.device,
)
bg_upsampler = self.bg_upsampler if background_enhance else None
face_upsampler = self.bg_upsampler if face_upsample else None
img = cv2.imread(str(image), cv2.IMREAD_COLOR)
if has_aligned:
# the input faces are already cropped and aligned
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
self.face_helper.cropped_faces = [img]
else:
self.face_helper.read_image(img)
# get face landmarks for each face
num_det_faces = self.face_helper.get_face_landmarks_5(
only_center_face=only_center_face, resize=640, eye_dist_threshold=5
)
print(f"\tdetect {num_det_faces} faces")
# align and warp each face
self.face_helper.align_warp_face()
# face restoration for each cropped face
for idx, cropped_face in enumerate(self.face_helper.cropped_faces):
# prepare data
cropped_face_t = img2tensor(
cropped_face / 255.0, bgr2rgb=True, float32=True
)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)
try:
with torch.no_grad():
output = self.net(
cropped_face_t, w=codeformer_fidelity, adain=True
)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output
torch.cuda.empty_cache()
except Exception as error:
print(f"\tFailed inference for CodeFormer: {error}")
restored_face = tensor2img(
cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
)
restored_face = restored_face.astype("uint8")
self.face_helper.add_restored_face(restored_face)
# paste_back
if not has_aligned:
# upsample the background
if bg_upsampler is not None:
# Now only support RealESRGAN for upsampling background
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
else:
bg_img = None
self.face_helper.get_inverse_affine(None)
# paste each restored face to the input image
if face_upsample and face_upsampler is not None:
restored_img = self.face_helper.paste_faces_to_input_image(
upsample_img=bg_img,
draw_box=draw_box,
face_upsampler=face_upsampler,
)
else:
restored_img = self.face_helper.paste_faces_to_input_image(
upsample_img=bg_img, draw_box=draw_box
)
# save restored img
out_path = Path(tempfile.mkdtemp()) / "output.png"
if not has_aligned and restored_img is not None:
imwrite(restored_img, str(out_path))
return out_path
def imread(img_path):
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def set_realesrgan():
if not torch.cuda.is_available(): # CPU
import warnings
warnings.warn(
"The unoptimized RealESRGAN is slow on CPU. We do not use it. "
"If you really want to use it, please modify the corresponding codes.",
category=RuntimeWarning,
)
bg_upsampler = None
else:
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
bg_upsampler = RealESRGANer(
scale=2,
model_path="./weights/RealESRGAN_x2plus.pth",
model=model,
tile=400,
tile_pad=40,
pre_pad=0,
half=True,
)
return bg_upsampler
|