File size: 6,617 Bytes
1976a91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""
download checkpoints to ./weights beforehand 
python scripts/download_pretrained_models.py facelib
python scripts/download_pretrained_models.py CodeFormer
wget 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth'
"""

import tempfile
import cv2
import torch
from torchvision.transforms.functional import normalize
from cog import BasePredictor, Input, Path

from basicsr.utils import imwrite, img2tensor, tensor2img
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.realesrgan_utils import RealESRGANer
from basicsr.utils.registry import ARCH_REGISTRY
from facelib.utils.face_restoration_helper import FaceRestoreHelper


class Predictor(BasePredictor):
    def setup(self):
        """Load the model into memory to make running multiple predictions efficient"""
        self.device = "cuda:0"
        self.bg_upsampler = set_realesrgan()
        self.net = ARCH_REGISTRY.get("CodeFormer")(
            dim_embd=512,
            codebook_size=1024,
            n_head=8,
            n_layers=9,
            connect_list=["32", "64", "128", "256"],
        ).to(self.device)
        ckpt_path = "weights/CodeFormer/codeformer.pth"
        checkpoint = torch.load(ckpt_path)[
            "params_ema"
        ]  # update file permission if cannot load
        self.net.load_state_dict(checkpoint)
        self.net.eval()

    def predict(
        self,
        image: Path = Input(description="Input image"),
        codeformer_fidelity: float = Input(
            default=0.5,
            ge=0,
            le=1,
            description="Balance the quality (lower number) and fidelity (higher number).",
        ),
        background_enhance: bool = Input(
            description="Enhance background image with Real-ESRGAN", default=True
        ),
        face_upsample: bool = Input(
            description="Upsample restored faces for high-resolution AI-created images",
            default=True,
        ),
        upscale: int = Input(
            description="The final upsampling scale of the image",
            default=2,
        ),
    ) -> Path:
        """Run a single prediction on the model"""

        # take the default setting for the demo
        has_aligned = False
        only_center_face = False
        draw_box = False
        detection_model = "retinaface_resnet50"

        self.face_helper = FaceRestoreHelper(
            upscale,
            face_size=512,
            crop_ratio=(1, 1),
            det_model=detection_model,
            save_ext="png",
            use_parse=True,
            device=self.device,
        )

        bg_upsampler = self.bg_upsampler if background_enhance else None
        face_upsampler = self.bg_upsampler if face_upsample else None

        img = cv2.imread(str(image), cv2.IMREAD_COLOR)

        if has_aligned:
            # the input faces are already cropped and aligned
            img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
            self.face_helper.cropped_faces = [img]
        else:
            self.face_helper.read_image(img)
            # get face landmarks for each face
            num_det_faces = self.face_helper.get_face_landmarks_5(
                only_center_face=only_center_face, resize=640, eye_dist_threshold=5
            )
            print(f"\tdetect {num_det_faces} faces")
            # align and warp each face
            self.face_helper.align_warp_face()

        # face restoration for each cropped face
        for idx, cropped_face in enumerate(self.face_helper.cropped_faces):
            # prepare data
            cropped_face_t = img2tensor(
                cropped_face / 255.0, bgr2rgb=True, float32=True
            )
            normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
            cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)

            try:
                with torch.no_grad():
                    output = self.net(
                        cropped_face_t, w=codeformer_fidelity, adain=True
                    )[0]
                    restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
                del output
                torch.cuda.empty_cache()
            except Exception as error:
                print(f"\tFailed inference for CodeFormer: {error}")
                restored_face = tensor2img(
                    cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
                )

            restored_face = restored_face.astype("uint8")
            self.face_helper.add_restored_face(restored_face)

        # paste_back
        if not has_aligned:
            # upsample the background
            if bg_upsampler is not None:
                # Now only support RealESRGAN for upsampling background
                bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
            else:
                bg_img = None
            self.face_helper.get_inverse_affine(None)
            # paste each restored face to the input image
            if face_upsample and face_upsampler is not None:
                restored_img = self.face_helper.paste_faces_to_input_image(
                    upsample_img=bg_img,
                    draw_box=draw_box,
                    face_upsampler=face_upsampler,
                )
            else:
                restored_img = self.face_helper.paste_faces_to_input_image(
                    upsample_img=bg_img, draw_box=draw_box
                )

        # save restored img
        out_path = Path(tempfile.mkdtemp()) / "output.png"

        if not has_aligned and restored_img is not None:
            imwrite(restored_img, str(out_path))

        return out_path


def imread(img_path):
    img = cv2.imread(img_path)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    return img


def set_realesrgan():
    if not torch.cuda.is_available():  # CPU
        import warnings

        warnings.warn(
            "The unoptimized RealESRGAN is slow on CPU. We do not use it. "
            "If you really want to use it, please modify the corresponding codes.",
            category=RuntimeWarning,
        )
        bg_upsampler = None
    else:
        model = RRDBNet(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_block=23,
            num_grow_ch=32,
            scale=2,
        )
        bg_upsampler = RealESRGANer(
            scale=2,
            model_path="./weights/RealESRGAN_x2plus.pth",
            model=model,
            tile=400,
            tile_pad=40,
            pre_pad=0,
            half=True,
        )
    return bg_upsampler