metadata
base_model: ProsusAI/finbert
tags:
- generated_from_keras_callback
model-index:
- name: mehassan/finbert-finetuned
results: []
mehassan/finbert-finetuned
This model is a fine-tuned version of ProsusAI/finbert on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1000
- Train Accuracy: 0.9868
- Validation Loss: 0.2368
- Validation Accuracy: 0.9051
- Epoch: 4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 1e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.8773 | 0.6523 | 0.5521 | 0.9073 | 0 |
0.4449 | 0.9294 | 0.3423 | 0.9227 | 1 |
0.2584 | 0.9581 | 0.2543 | 0.9205 | 2 |
0.1562 | 0.9790 | 0.2481 | 0.9139 | 3 |
0.1000 | 0.9868 | 0.2368 | 0.9051 | 4 |
Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.1