opus-mt-en-ar-evaluated-en-to-ar-1000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ar on the un_multi dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1294
  • Bleu: 64.0048
  • Meteor: 0.4903
  • Gen Len: 21.85

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 11

Training results

Training Loss Epoch Step Validation Loss Bleu Meteor Gen Len
0.0489 1.0 100 0.1287 63.7573 0.4877 21.79
0.0447 2.0 200 0.1293 63.8776 0.49 21.875
0.0442 3.0 300 0.1294 64.0048 0.4903 21.85
0.0433 4.0 400 0.1294 64.0048 0.4903 21.85
0.0429 5.0 500 0.1294 64.0048 0.4903 21.85
0.0435 6.0 600 0.1294 64.0048 0.4903 21.85
0.0429 7.0 700 0.1294 64.0048 0.4903 21.85
0.0426 8.0 800 0.1294 64.0048 0.4903 21.85

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train meghazisofiane/opus-mt-en-ar-evaluated-en-to-ar-1000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1

Evaluation results