|
import os |
|
from typing import Union |
|
|
|
import clip |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from PIL import Image |
|
from torchvision.datasets.utils import download_url |
|
from transformers import AutoModel, AutoProcessor |
|
|
|
from .siglip_v2_5 import convert_v2_5_from_siglip |
|
|
|
|
|
__all__ = ["AestheticScore", "AestheticScoreSigLIP", "CLIPScore"] |
|
|
|
_MODELS = { |
|
"CLIP_ViT-L/14": "https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/video_caption/clip/ViT-L-14.pt", |
|
"Aesthetics_V2": "https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/video_caption/clip/sac%2Blogos%2Bava1-l14-linearMSE.pth", |
|
"aesthetic_predictor_v2_5": "https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/video_caption/clip/aesthetic_predictor_v2_5.pth", |
|
} |
|
_MD5 = { |
|
"CLIP_ViT-L/14": "096db1af569b284eb76b3881534822d9", |
|
"Aesthetics_V2": "b1047fd767a00134b8fd6529bf19521a", |
|
"aesthetic_predictor_v2_5": "c46eb8c29f714c9231dc630b8226842a", |
|
} |
|
|
|
|
|
def get_list_depth(lst): |
|
if isinstance(lst, list): |
|
return 1 + max(get_list_depth(item) for item in lst) |
|
else: |
|
return 0 |
|
|
|
|
|
def reshape_images(images: Union[list[list[Image.Image]], list[Image.Image]]): |
|
|
|
depth = get_list_depth(images) |
|
if depth == 1: |
|
if not isinstance(images[0], Image.Image): |
|
raise ValueError("The item in 1D images should be Image.Image.") |
|
num_sampled_frames = None |
|
elif depth == 2: |
|
if not isinstance(images[0][0], Image.Image): |
|
raise ValueError("The item in 2D images (videos) should be Image.Image.") |
|
num_sampled_frames = len(images[0]) |
|
if not all(len(video_frames) == num_sampled_frames for video_frames in images): |
|
raise ValueError("All item in 2D images should be with the same length.") |
|
|
|
reshaped_images = [] |
|
for video_frames in images: |
|
reshaped_images.extend([frame for frame in video_frames]) |
|
images = reshaped_images |
|
else: |
|
raise ValueError("The input images should be in 1/2D list.") |
|
|
|
return images, num_sampled_frames |
|
|
|
|
|
def reshape_scores(scores: list[float], num_sampled_frames: int) -> list[float]: |
|
if isinstance(scores, list): |
|
if num_sampled_frames is not None: |
|
batch_size = len(scores) // num_sampled_frames |
|
scores = [ |
|
scores[i * num_sampled_frames:(i + 1) * num_sampled_frames] |
|
for i in range(batch_size) |
|
] |
|
return scores |
|
else: |
|
return [scores] |
|
|
|
|
|
|
|
class _MLP(nn.Module): |
|
def __init__(self, input_size): |
|
super().__init__() |
|
self.input_size = input_size |
|
self.layers = nn.Sequential( |
|
nn.Linear(self.input_size, 1024), |
|
|
|
nn.Dropout(0.2), |
|
nn.Linear(1024, 128), |
|
|
|
nn.Dropout(0.2), |
|
nn.Linear(128, 64), |
|
|
|
nn.Dropout(0.1), |
|
nn.Linear(64, 16), |
|
|
|
nn.Linear(16, 1), |
|
) |
|
|
|
def forward(self, x): |
|
return self.layers(x) |
|
|
|
|
|
class AestheticScore: |
|
"""Compute LAION Aesthetics Score V2 based on openai/clip. Note that the default |
|
inference dtype with GPUs is fp16 in openai/clip. |
|
|
|
Ref: |
|
1. https://github.com/christophschuhmann/improved-aesthetic-predictor/blob/main/simple_inference.py. |
|
2. https://github.com/openai/CLIP/issues/30. |
|
""" |
|
|
|
def __init__(self, root: str = "~/.cache/clip", device: str = "cpu"): |
|
|
|
self.root = os.path.expanduser(root) |
|
if not os.path.exists(self.root): |
|
os.makedirs(self.root) |
|
filename = "ViT-L-14.pt" |
|
download_url(_MODELS["CLIP_ViT-L/14"], self.root, filename=filename, md5=_MD5["CLIP_ViT-L/14"]) |
|
self.clip_model, self.preprocess = clip.load(os.path.join(self.root, filename), device=device) |
|
self.device = device |
|
self._load_mlp() |
|
|
|
def _load_mlp(self): |
|
filename = "sac+logos+ava1-l14-linearMSE.pth" |
|
download_url(_MODELS["Aesthetics_V2"], self.root, filename=filename, md5=_MD5["Aesthetics_V2"]) |
|
state_dict = torch.load(os.path.join(self.root, filename)) |
|
self.mlp = _MLP(768) |
|
self.mlp.load_state_dict(state_dict) |
|
self.mlp.to(self.device) |
|
self.mlp.eval() |
|
|
|
def __call__(self, images: Union[list[list[Image.Image]], list[Image.Image]], texts=None) -> list[float]: |
|
images, num_sampled_frames = reshape_images(images) |
|
|
|
with torch.no_grad(): |
|
images = torch.stack([self.preprocess(image) for image in images]).to(self.device) |
|
image_embs = F.normalize(self.clip_model.encode_image(images)) |
|
scores = self.mlp(image_embs.float()) |
|
|
|
scores = scores.squeeze().tolist() |
|
return reshape_scores(scores, num_sampled_frames) |
|
|
|
def __repr__(self) -> str: |
|
return "aesthetic_score" |
|
|
|
|
|
class AestheticScoreSigLIP: |
|
"""Compute Aesthetics Score V2.5 based on google/siglip-so400m-patch14-384. |
|
|
|
Ref: |
|
1. https://github.com/discus0434/aesthetic-predictor-v2-5. |
|
2. https://github.com/discus0434/aesthetic-predictor-v2-5/issues/2. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
root: str = "~/.cache/clip", |
|
device: str = "cpu", |
|
torch_dtype=torch.float16 |
|
): |
|
self.root = os.path.expanduser(root) |
|
if not os.path.exists(self.root): |
|
os.makedirs(self.root) |
|
filename = "aesthetic_predictor_v2_5.pth" |
|
download_url(_MODELS["aesthetic_predictor_v2_5"], self.root, filename=filename, md5=_MD5["aesthetic_predictor_v2_5"]) |
|
self.model, self.preprocessor = convert_v2_5_from_siglip( |
|
predictor_name_or_path=os.path.join(self.root, filename), |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
) |
|
self.model = self.model.to(device=device, dtype=torch_dtype) |
|
self.device = device |
|
self.torch_dtype = torch_dtype |
|
|
|
def __call__(self, images: Union[list[list[Image.Image]], list[Image.Image]], texts=None) -> list[float]: |
|
images, num_sampled_frames = reshape_images(images) |
|
|
|
pixel_values = self.preprocessor(images, return_tensors="pt").pixel_values |
|
pixel_values = pixel_values.to(self.device, self.torch_dtype) |
|
with torch.no_grad(): |
|
scores = self.model(pixel_values).logits.squeeze().float().cpu().numpy() |
|
|
|
scores = scores.squeeze().tolist() |
|
return reshape_scores(scores, num_sampled_frames) |
|
|
|
def __repr__(self) -> str: |
|
return "aesthetic_score_siglip" |
|
|
|
|
|
class CLIPScore: |
|
"""Compute CLIP scores for image-text pairs based on huggingface/transformers.""" |
|
|
|
def __init__( |
|
self, |
|
model_name_or_path: str = "openai/clip-vit-large-patch14", |
|
torch_dtype=torch.float16, |
|
device: str = "cpu", |
|
): |
|
self.model = AutoModel.from_pretrained(model_name_or_path, torch_dtype=torch_dtype).eval().to(device) |
|
self.processor = AutoProcessor.from_pretrained(model_name_or_path) |
|
self.torch_dtype = torch_dtype |
|
self.device = device |
|
|
|
def __call__(self, images: Union[list[list[Image.Image]], list[Image.Image]], texts: list[str]) -> list[float]: |
|
assert len(images) == len(texts) |
|
images, num_sampled_frames = reshape_images(images) |
|
|
|
if num_sampled_frames is not None: |
|
texts = [[text] * num_sampled_frames for text in texts] |
|
texts = [item for sublist in texts for item in sublist] |
|
|
|
image_inputs = self.processor(images=images, return_tensors="pt") |
|
if self.torch_dtype == torch.float16: |
|
image_inputs["pixel_values"] = image_inputs["pixel_values"].half() |
|
text_inputs = self.processor(text=texts, return_tensors="pt", padding=True, truncation=True) |
|
image_inputs, text_inputs = image_inputs.to(self.device), text_inputs.to(self.device) |
|
with torch.no_grad(): |
|
image_embs = F.normalize(self.model.get_image_features(**image_inputs)) |
|
text_embs = F.normalize(self.model.get_text_features(**text_inputs)) |
|
scores = text_embs @ image_embs.T |
|
|
|
scores = scores.squeeze().tolist() |
|
return reshape_scores(scores, num_sampled_frames) |
|
|
|
def __repr__(self) -> str: |
|
return "clip_score" |
|
|
|
|
|
if __name__ == "__main__": |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
from .video_dataset import VideoDataset, collate_fn |
|
|
|
aesthetic_score = AestheticScore(device="cuda") |
|
aesthetic_score_siglip = AestheticScoreSigLIP(device="cuda") |
|
|
|
|
|
paths = ["your_image_path"] * 3 |
|
|
|
images = [Image.open(p).convert("RGB") for p in paths] |
|
|
|
print(aesthetic_score(images)) |
|
|
|
|
|
test_dataset = VideoDataset( |
|
dataset_inputs={"video_path": ["your_video_path"] * 3}, |
|
sample_method="mid", |
|
num_sampled_frames=2 |
|
) |
|
test_loader = DataLoader(test_dataset, batch_size=1, num_workers=1, collate_fn=collate_fn) |
|
|
|
for idx, batch in enumerate(tqdm(test_loader)): |
|
batch_frame = batch["sampled_frame"] |
|
print(aesthetic_score_siglip(batch_frame)) |