File size: 9,808 Bytes
208b0eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
from typing import Union

import clip
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from torchvision.datasets.utils import download_url
from transformers import AutoModel, AutoProcessor

from .siglip_v2_5 import convert_v2_5_from_siglip

# All metrics.
__all__ = ["AestheticScore", "AestheticScoreSigLIP", "CLIPScore"]

_MODELS = {
    "CLIP_ViT-L/14": "https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/video_caption/clip/ViT-L-14.pt",
    "Aesthetics_V2": "https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/video_caption/clip/sac%2Blogos%2Bava1-l14-linearMSE.pth",
    "aesthetic_predictor_v2_5": "https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/video_caption/clip/aesthetic_predictor_v2_5.pth",
}
_MD5 = {
    "CLIP_ViT-L/14": "096db1af569b284eb76b3881534822d9",
    "Aesthetics_V2": "b1047fd767a00134b8fd6529bf19521a",
    "aesthetic_predictor_v2_5": "c46eb8c29f714c9231dc630b8226842a",
}


def get_list_depth(lst):
    if isinstance(lst, list):
        return 1 + max(get_list_depth(item) for item in lst)
    else:
        return 0


def reshape_images(images: Union[list[list[Image.Image]], list[Image.Image]]):
    # Check the input sanity.
    depth = get_list_depth(images)
    if depth == 1:  # batch image input
        if not isinstance(images[0], Image.Image):
            raise ValueError("The item in 1D images should be Image.Image.")
        num_sampled_frames = None
    elif depth == 2:  # batch video input
        if not isinstance(images[0][0], Image.Image):
            raise ValueError("The item in 2D images (videos) should be Image.Image.")
        num_sampled_frames = len(images[0])
        if not all(len(video_frames) == num_sampled_frames for video_frames in images):
            raise ValueError("All item in 2D images should be with the same length.")
        # [batch_size, num_sampled_frames, H, W, C] => [batch_size * num_sampled_frames, H, W, C].
        reshaped_images = []
        for video_frames in images:
            reshaped_images.extend([frame for frame in video_frames])
        images = reshaped_images
    else:
        raise ValueError("The input images should be in 1/2D list.")
    
    return images, num_sampled_frames


def reshape_scores(scores: list[float], num_sampled_frames: int) -> list[float]:
    if isinstance(scores, list):
        if num_sampled_frames is not None: # Batch video input
            batch_size = len(scores) // num_sampled_frames
            scores = [
                scores[i * num_sampled_frames:(i + 1) * num_sampled_frames]
                for i in range(batch_size)
            ]
        return scores
    else:
        return [scores]


# if you changed the MLP architecture during training, change it also here:
class _MLP(nn.Module):
    def __init__(self, input_size):
        super().__init__()
        self.input_size = input_size
        self.layers = nn.Sequential(
            nn.Linear(self.input_size, 1024),
            # nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(1024, 128),
            # nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(128, 64),
            # nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(64, 16),
            # nn.ReLU(),
            nn.Linear(16, 1),
        )

    def forward(self, x):
        return self.layers(x)


class AestheticScore:
    """Compute LAION Aesthetics Score V2 based on openai/clip. Note that the default
    inference dtype with GPUs is fp16 in openai/clip.

    Ref:
    1. https://github.com/christophschuhmann/improved-aesthetic-predictor/blob/main/simple_inference.py.
    2. https://github.com/openai/CLIP/issues/30.
    """

    def __init__(self, root: str = "~/.cache/clip", device: str = "cpu"):
        # The CLIP model is loaded in the evaluation mode.
        self.root = os.path.expanduser(root)
        if not os.path.exists(self.root):
            os.makedirs(self.root)
        filename = "ViT-L-14.pt"
        download_url(_MODELS["CLIP_ViT-L/14"], self.root, filename=filename, md5=_MD5["CLIP_ViT-L/14"])
        self.clip_model, self.preprocess = clip.load(os.path.join(self.root, filename), device=device)
        self.device = device
        self._load_mlp()

    def _load_mlp(self):
        filename = "sac+logos+ava1-l14-linearMSE.pth"
        download_url(_MODELS["Aesthetics_V2"], self.root, filename=filename, md5=_MD5["Aesthetics_V2"])
        state_dict = torch.load(os.path.join(self.root, filename))
        self.mlp = _MLP(768)
        self.mlp.load_state_dict(state_dict)
        self.mlp.to(self.device)
        self.mlp.eval()

    def __call__(self, images: Union[list[list[Image.Image]], list[Image.Image]], texts=None) -> list[float]:
        images, num_sampled_frames = reshape_images(images)

        with torch.no_grad():
            images = torch.stack([self.preprocess(image) for image in images]).to(self.device)
            image_embs = F.normalize(self.clip_model.encode_image(images))
            scores = self.mlp(image_embs.float())  # torch.float16 -> torch.float32, [N, 1]
        
        scores = scores.squeeze().tolist()  # scalar or list
        return reshape_scores(scores, num_sampled_frames)
    
    def __repr__(self) -> str:
        return "aesthetic_score"


class AestheticScoreSigLIP:
    """Compute Aesthetics Score V2.5 based on google/siglip-so400m-patch14-384.

    Ref:
    1. https://github.com/discus0434/aesthetic-predictor-v2-5.
    2. https://github.com/discus0434/aesthetic-predictor-v2-5/issues/2.
    """

    def __init__(
        self,
        root: str = "~/.cache/clip",
        device: str = "cpu",
        torch_dtype=torch.float16
    ):
        self.root = os.path.expanduser(root)
        if not os.path.exists(self.root):
            os.makedirs(self.root)
        filename = "aesthetic_predictor_v2_5.pth"
        download_url(_MODELS["aesthetic_predictor_v2_5"], self.root, filename=filename, md5=_MD5["aesthetic_predictor_v2_5"])
        self.model, self.preprocessor = convert_v2_5_from_siglip(
            predictor_name_or_path=os.path.join(self.root, filename),
            low_cpu_mem_usage=True,
            trust_remote_code=True,
        )
        self.model = self.model.to(device=device, dtype=torch_dtype)
        self.device = device
        self.torch_dtype = torch_dtype

    def __call__(self, images: Union[list[list[Image.Image]], list[Image.Image]], texts=None) -> list[float]:
        images, num_sampled_frames = reshape_images(images)

        pixel_values = self.preprocessor(images, return_tensors="pt").pixel_values
        pixel_values = pixel_values.to(self.device, self.torch_dtype)
        with torch.no_grad():
            scores = self.model(pixel_values).logits.squeeze().float().cpu().numpy()
        
        scores = scores.squeeze().tolist()  # scalar or list
        return reshape_scores(scores, num_sampled_frames)
    
    def __repr__(self) -> str:
        return "aesthetic_score_siglip"


class CLIPScore:
    """Compute CLIP scores for image-text pairs based on huggingface/transformers."""

    def __init__(
        self,
        model_name_or_path: str = "openai/clip-vit-large-patch14",
        torch_dtype=torch.float16,
        device: str = "cpu",
    ):
        self.model = AutoModel.from_pretrained(model_name_or_path, torch_dtype=torch_dtype).eval().to(device)
        self.processor = AutoProcessor.from_pretrained(model_name_or_path)
        self.torch_dtype = torch_dtype
        self.device = device

    def __call__(self, images: Union[list[list[Image.Image]], list[Image.Image]], texts: list[str]) -> list[float]:
        assert len(images) == len(texts)
        images, num_sampled_frames = reshape_images(images)
        # Expand texts in the batch video input case.
        if num_sampled_frames is not None:
            texts = [[text] * num_sampled_frames for text in texts]
            texts = [item for sublist in texts for item in sublist]

        image_inputs = self.processor(images=images, return_tensors="pt")  # {"pixel_values": }
        if self.torch_dtype == torch.float16:
            image_inputs["pixel_values"] = image_inputs["pixel_values"].half()
        text_inputs = self.processor(text=texts, return_tensors="pt", padding=True, truncation=True)  # {"inputs_id": }
        image_inputs, text_inputs = image_inputs.to(self.device), text_inputs.to(self.device)
        with torch.no_grad():
            image_embs = F.normalize(self.model.get_image_features(**image_inputs))
            text_embs = F.normalize(self.model.get_text_features(**text_inputs))
            scores = text_embs @ image_embs.T  # [N, N]

        scores = scores.squeeze().tolist()  # scalar or list
        return reshape_scores(scores, num_sampled_frames)
    
    def __repr__(self) -> str:
        return "clip_score"


if __name__ == "__main__":
    from torch.utils.data import DataLoader
    from tqdm import tqdm
    from .video_dataset import VideoDataset, collate_fn

    aesthetic_score = AestheticScore(device="cuda")
    aesthetic_score_siglip = AestheticScoreSigLIP(device="cuda")
    # clip_score = CLIPScore(device="cuda")

    paths = ["your_image_path"] * 3
    # texts = ["a joker", "a woman", "a man"]
    images = [Image.open(p).convert("RGB") for p in paths]

    print(aesthetic_score(images))
    # print(clip_score(images, texts))

    test_dataset = VideoDataset(
        dataset_inputs={"video_path": ["your_video_path"] * 3},
        sample_method="mid",
        num_sampled_frames=2
    )
    test_loader = DataLoader(test_dataset, batch_size=1, num_workers=1, collate_fn=collate_fn)

    for idx, batch in enumerate(tqdm(test_loader)):
        batch_frame = batch["sampled_frame"]
        print(aesthetic_score_siglip(batch_frame))