bert-base-uncased-issues-128
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2336
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 16
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.1005 | 1.0 | 291 | 1.6951 |
1.6354 | 2.0 | 582 | 1.5200 |
1.499 | 3.0 | 873 | 1.3495 |
1.3951 | 4.0 | 1164 | 1.3253 |
1.3294 | 5.0 | 1455 | 1.2449 |
1.2879 | 6.0 | 1746 | 1.3726 |
1.2343 | 7.0 | 2037 | 1.3026 |
1.2019 | 8.0 | 2328 | 1.3469 |
1.1691 | 9.0 | 2619 | 1.2174 |
1.1415 | 10.0 | 2910 | 1.1816 |
1.1263 | 11.0 | 3201 | 1.1311 |
1.1114 | 12.0 | 3492 | 1.1781 |
1.0896 | 13.0 | 3783 | 1.2231 |
1.0751 | 14.0 | 4074 | 1.2109 |
1.0723 | 15.0 | 4365 | 1.2206 |
1.0619 | 16.0 | 4656 | 1.2336 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.0+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Model tree for mcguiver/bert-base-uncased-issues-128
Base model
google-bert/bert-base-uncased