bert-base-uncased-issues-128

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2336

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss
2.1005 1.0 291 1.6951
1.6354 2.0 582 1.5200
1.499 3.0 873 1.3495
1.3951 4.0 1164 1.3253
1.3294 5.0 1455 1.2449
1.2879 6.0 1746 1.3726
1.2343 7.0 2037 1.3026
1.2019 8.0 2328 1.3469
1.1691 9.0 2619 1.2174
1.1415 10.0 2910 1.1816
1.1263 11.0 3201 1.1311
1.1114 12.0 3492 1.1781
1.0896 13.0 3783 1.2231
1.0751 14.0 4074 1.2109
1.0723 15.0 4365 1.2206
1.0619 16.0 4656 1.2336

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.0+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
6
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for mcguiver/bert-base-uncased-issues-128

Finetuned
(2549)
this model