Ramonda
Collection
Merge experiments of various Mistral models fine tuned by bardsai
β’
4 items
β’
Updated
β’
1
ramonda-monarch-7b is a merge of the following models using LazyMergekit:
Model | Average | ARC_easy | HellaSwag | MMLU | TruthfulQA-mc2 | Winogrande | GSM8K | ARC_challenge |
---|---|---|---|---|---|---|---|---|
mayacinka/ramonda-monarch-7b | 76.66 | 86.91 | 87.45 | 61.97 | 77.4 | 81.61 | 73.01 | 68.26 |
Groups | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
mmlu | N/A | none | 0 | acc | 0.6197 | Β± | 0.0039 |
- humanities | N/A | none | None | acc | 0.5762 | Β± | 0.0067 |
- other | N/A | none | None | acc | 0.6936 | Β± | 0.0080 |
- social_sciences | N/A | none | None | acc | 0.7192 | Β± | 0.0079 |
- stem | N/A | none | None | acc | 0.5147 | Β± | 0.0085 |
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
mayacinka/ramonda-monarch-7b | 44.63 | 77.41 | 77.41 | 49.59 | 62.26 |
models:
- model: bardsai/jaskier-7b-dpo-v5.6
# No parameters necessary for base model
- model: eren23/ogno-monarch-jaskier-merge-7b
parameters:
density: 0.53
weight: 0.4
- model: liminerity/Omningotex-7b-slerp
parameters:
density: 0.53
weight: 0.3
- model: yleo/OgnoMonarch-7B
parameters:
density: 0.53
weight: 0.3
merge_method: dare_ties
base_model: bardsai/jaskier-7b-dpo-v5.6
parameters:
int8_mask: true
dtype: bfloat16
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mayacinka/ramonda-monarch-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])