|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- CultriX/NeuralTrix-7B-dpo |
|
- paulml/DPOB-INMTOB-7B |
|
base_model: |
|
- CultriX/NeuralTrix-7B-dpo |
|
- paulml/DPOB-INMTOB-7B |
|
--- |
|
|
|
# djinn |
|
|
|
djinn is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) |
|
* [paulml/DPOB-INMTOB-7B](https://huggingface.co/paulml/DPOB-INMTOB-7B) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
merge_method: linear |
|
parameters: |
|
weight: 1.0 |
|
slices: |
|
- sources: |
|
- model: CultriX/NeuralTrix-7B-dpo # embed_tokens comes along with the ride with whatever is the first layer |
|
layer_range: [0, 1] |
|
- model: paulml/DPOB-INMTOB-7B # add dummy second model with 0 weight so tokenizer-based merge routine is invoked for embed_tokens |
|
layer_range: [0, 1] |
|
parameters: |
|
weight: 0 |
|
- sources: |
|
- model: cognitivecomputations/dolphin-2.1-mistral-7b |
|
layer_range: [0, 8] |
|
- sources: |
|
- model: bardsai/jaskier-7b-dpo-v5.6 |
|
layer_range: [8, 16] |
|
- sources: |
|
- model: paulml/OGNO-7B |
|
layer_range: [16, 24] |
|
- sources: |
|
- model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B |
|
layer_range: [24, 31] |
|
- sources: # same as above, but for lm_head with the last layer |
|
- model: CultriX/NeuralTrix-7B-dpo |
|
layer_range: [31, 32] |
|
- model: paulml/DPOB-INMTOB-7B |
|
layer_range: [31, 32] |
|
parameters: |
|
weight: 0 |
|
dtype: float16 |
|
tokenizer_source: model:cognitivecomputations/dolphin-2.1-mistral-7b |
|
|
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "mayacinka/djinn" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |