|
# UPDATE: NEW AND IMPROVED MODEL AVAILABLE AT https://huggingface.co/maxpe/bertin-roberta-base-spanish_sem_eval_2018_task_1 |
|
|
|
# BERTIN-roBERTa-base-Spanish_SemEval18_Emodetection |
|
|
|
This is a BERTIN-roBERTa-base-Spanish model trained on ~3500 tweets in Spanish annotated for 11 emotion categories in [SemEval-2018 Task 1: Affect in Tweets: SubTask 5: Emotion Classification](https://competitions.codalab.org/competitions/17751). |
|
|
|
Run the classifier on the test set of the competition: |
|
|
|
```python |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer, AutoModel |
|
from torch.utils.data import DataLoader |
|
import torch |
|
import pandas as pd |
|
|
|
# choose GPU when available |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("bertin-project/bertin-roberta-base-spanish",model_max_length=512) |
|
|
|
# build custom model with classification layer on top and a dropout layer before |
|
class RobertaClass(torch.nn.Module): |
|
|
|
def __init__(self): |
|
super(RobertaClass, self).__init__() |
|
self.l1 = AutoModel.from_pretrained("bertin-project/bertin-roberta-base-spanish",return_dict=False) |
|
self.l2 = torch.nn.Dropout(0.3) |
|
self.l3 = torch.nn.Linear(768, 11) |
|
|
|
def forward(self, input_ids, attention_mask): |
|
_, output_1= self.l1(input_ids=input_ids, attention_mask=attention_mask) |
|
output_2 = self.l2(output_1) |
|
output = self.l3(output_2) |
|
|
|
return output |
|
|
|
model_name="bertin-roberta-base-spanish_semeval18_emodetection/pytorch_model.bin" |
|
|
|
model=RobertaClass() |
|
|
|
model.load_state_dict(torch.load(model_name,map_location=torch.device(device))) |
|
|
|
model.eval() |
|
|
|
# run on more than 1 GPU |
|
model = torch.nn.DataParallel(model) |
|
|
|
model.to(device) |
|
|
|
twnames=['anger','anticipation','disgust','fear','joy','love','optimism','pessimism','sadness','surprise','trust'] |
|
|
|
# load from hugging face dataset hub |
|
testset_raw = load_dataset('sem_eval_2018_task_1','subtask5.spanish',split='test') |
|
|
|
# remove old columns |
|
testset=testset_raw.remove_columns(twnames+["ID"]) |
|
|
|
# tokenize |
|
testset_tokenized = testset.map(lambda e: tokenizer(e['Tweet'], truncation=True, padding='max_length'), batched=True) |
|
|
|
testset_tokenized=testset_tokenized.remove_columns("Tweet") |
|
|
|
testset_tokenized.set_format(type='torch', columns=['input_ids', 'attention_mask']) |
|
|
|
|
|
outfile="predicted_2018-E-c-Es-test-gold.txt" |
|
|
|
MAX_LEN = 512 |
|
VALID_BATCH_SIZE = 8 |
|
# set batch size according to available RAM |
|
# VALID_BATCH_SIZE = 1000 |
|
|
|
# set num_workers for parallel processing |
|
inference_params = {'batch_size': VALID_BATCH_SIZE, |
|
'shuffle': False, |
|
# 'num_workers': 1 |
|
} |
|
|
|
inference_loader = DataLoader(testset_tokenized, **inference_params) |
|
|
|
|
|
open(outfile,"w").close() |
|
with torch.no_grad(): |
|
# change lines for progress manager |
|
# for _, data in tqdm(enumerate(inference_loader, 0),total=len(inference_loader)): |
|
for _, data in enumerate(inference_loader, 0): |
|
outputs = model(input_ids=data['input_ids'],attention_mask=data['attention_mask']) |
|
fin_outputs=torch.sigmoid(outputs).cpu().detach().numpy().tolist() |
|
pd.DataFrame(fin_outputs).to_csv(outfile,index=False,header=False,sep="\t",mode='a') |
|
|
|
|
|
# # dataset from file (one text per line) |
|
# from datasets import Dataset |
|
|
|
# with open(linesoftextfile,"rb") as textfile: |
|
# textdict={"text":[x.decode().rstrip("\n") for x in textfile.readlines()]} |
|
|
|
# inference_dataset=Dataset.from_dict(textdict) |
|
# del(textdict) |
|
``` |