|
--- |
|
license: llama3.2 |
|
base_model: |
|
- meta-llama/Llama-3.2-11B-Vision-Instruct |
|
language: |
|
- en |
|
- ko |
|
tags: |
|
- vlm-ko |
|
- meta |
|
- llama-3.2 |
|
- llama-3.2-ko |
|
datasets: |
|
- maum-ai/General-Evol-VQA |
|
--- |
|
<p align="left"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/646484cfb90150b2706df03b/BEOyMpnnY9VY2KXlc3V2F.png" width="20%"/> |
|
<p> |
|
|
|
# Llama-3.2-MAAL-11B-Vision-v0.1 |
|
**Llama-3.2-MAAL-11B-Vision-v0.1** is bilingual multimodal model trained for text and visual understanding across Korean and English languages. We are releasing a [model](https://huggingface.co/maum-ai/Llama-3.2-MAAL-11B-Vision-v0.1), a subset of the [training dataset](https://huggingface.co/datasets/maum-ai/General-Evol-VQA), and a [leaderboard](https://huggingface.co/spaces/maum-ai/KOFFVQA-Leaderboard) to promote and accelerate the development of Korean Vision-Language Models (VLMs). |
|
|
|
- **Developed by:** [maum.ai Brain NLP](https://maum-ai.github.io). Jaeyoon Jung, Yoonshik Kim, Yekyung Nah |
|
- **Language(s) (NLP):** Korean, English (currently, bilingual) |
|
|
|
|
|
## Model Description |
|
|
|
Version 0.1 is fine-tuned by English and Korean VQA datasets with other datasets (OCR, Math, etc)... |
|
|
|
- We trained this model on 8 H100-80G for 2 days with image-text pair multimodal fine-tuning dataset |
|
- [maum-ai/General-Evol-VQA](https://huggingface.co/datasets/maum-ai/General-Evol-VQA) is one of the datasets that we used for fine-tuning. |
|
|
|
## sample inference code (GPU) |
|
Starting with transformers >= 4.45.0 onward, you can run inference to generate text based on an image and a starting prompt you supply. |
|
|
|
``` |
|
import requests |
|
import torch |
|
from PIL import Image |
|
from transformers import MllamaForConditionalGeneration, AutoProcessor |
|
|
|
model_id = "maum-ai/Llama-3.2-MAAL-11B-Vision-v0.1" |
|
|
|
model = MllamaForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
messages = [ |
|
{"role": "user", "content": [ |
|
{"type": "image"}, |
|
{"type": "text", "text": "์ด ์ด๋ฏธ์ง์ ๋ํด์ ์๋ฅผ ์จ์ค"} |
|
]} |
|
] |
|
input_text = processor.apply_chat_template(messages, add_generation_prompt=True) |
|
inputs = processor( |
|
image, |
|
input_text, |
|
add_special_tokens=False, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
output = model.generate(**inputs, max_new_tokens=200) |
|
print(processor.decode(output[0])) |
|
``` |
|
|
|
## Evaluation Results |
|
As the main goal of version 0.1 is **leveraging Korean VQA and OCR capabilities tailored to real-world business use cases**, we select [**KOFFVQA**](https://huggingface.co/spaces/maum-ai/KOFFVQA-Leaderboard) as our evaluation method to assess the Korean instruction-following skills. |
|
|
|
|Model|Params (B)|average(โ)| |
|
|-|-|-| |
|
|NCSOFT/VARCO-VISION-14B|15.2b|66.69| |
|
|Qwen/Qwen2-VL-7B-Instruct|8.3b|63.53| |
|
|**maum-ai/Llama-3.2-MAAL-11B-Vision-v0.1**|10.7b|61.13| |
|
|meta-llama/Llama-3.2-11B-Vision-Instruct|10.7b|50.36| |
|
|mistralai/Pixtral-12B-2409|12.7b|44.62| |
|
|llava-onevision-qwen2-7b-ov|8b|43.78| |
|
|InternVL2-8b|8.1b|32.76| |
|
|MiniCPM-V-2_6|8.1b|32.69| |
|
|
|
Our model has achieved a **20%** performance improvement compared to the previous base model. |
|
You can check more results in [this Leaderboard](https://huggingface.co/spaces/maum-ai/KOFFVQA-Leaderboard) |
|
|
|
### We will release enhanced model, v0.2 soon |