|
--- |
|
license: wtfpl |
|
tags: |
|
- vision |
|
- image-segmentation |
|
widget: |
|
- src: https://images.unsplash.com/photo-1643310325061-2beef64926a5?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8Nnx8cmFjb29uc3xlbnwwfHwwfHw%3D&w=1000&q=80 |
|
example_title: Person |
|
- src: https://freerangestock.com/sample/139043/young-man-standing-and-leaning-on-car.jpg |
|
example_title: Person |
|
--- |
|
# Segformer B2 fine-tuned for clothes segmentation |
|
|
|
SegFormer model fine-tuned on [ATR dataset](https://github.com/lemondan/HumanParsing-Dataset) for clothes segmentation |
|
|
|
```python |
|
from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation |
|
from PIL import Image |
|
import requests |
|
import matplotlib.pyplot as plt |
|
import torch.nn as nn |
|
|
|
extractor = AutoFeatureExtractor.from_pretrained("mattmdjaga/segformer_b2_clothes") |
|
model = SegformerForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes") |
|
|
|
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80" |
|
|
|
image = Image.open(requests.get(url, stream=True).raw) |
|
inputs = extractor(images=image, return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
logits = outputs.logits.cpu() |
|
|
|
upsampled_logits = nn.functional.interpolate( |
|
logits, |
|
size=image.size[::-1], |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
|
|
pred_seg = upsampled_logits.argmax(dim=1)[0] |
|
plt.imshow(pred_seg) |
|
``` |