autoevaluator's picture
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator
2d36d30
|
raw
history blame
5.76 kB
metadata
datasets:
  - Matthijs/snacks
model-index:
  - name: matteopilotto/vit-base-patch16-224-in21k-snacks
    results:
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: Matthijs/snacks
          type: Matthijs/snacks
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 0.8928571428571429
            name: Accuracy
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2IzY2JhYjg2MWI5NjQ3NTAyN2ZiNmI0ZGQ2YTBlZmI3MTk2MjEzMTk2ZWRiZjc3MTQ3Y2NmNzE3YTE0OWVkMiIsInZlcnNpb24iOjF9.TUt1-MR0dGTqzzQwxIzRBJ6J5jIPrGRwJo2wfdBnL3iEkmn-nKjIJm9omEIYfBMGgJa1CXnGdULRHk16DeiHBg
          - type: precision
            value: 0.8990033704680036
            name: Precision Macro
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjZjOGM3Y2IyODczNzhhNGEzOTUxNjAzNzhlOWFiNGFhMjU1ZTBkOGVlMTQzZWI0ZDM1NGZjYWIyYThlYzNiMCIsInZlcnNpb24iOjF9.yo8EHikUrpF-MAP1eJpKCWc7nOersQjSq07JqX_zbbqM1YSAFhGacEwjavfMY4sa1VcY6NU1dqeP3KbTlNtBDg
          - type: precision
            value: 0.8928571428571429
            name: Precision Micro
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWM5MjhkZjc1YzIzZDFmMDFkYzVjMDdhYTBlMGU2YmExMDQyNzQzZWFlMWNmNDIzNjUwMTdiYjNjYWJmNmE3OSIsInZlcnNpb24iOjF9.DpPgzQXykudTcwa_shu0h9FeZfuhPBqbKCpAAx-QYHyx2B9MEcKpdrsN8HcczqYZ5x3XIJ7ZeKPzXpfAz3ySAA
          - type: precision
            value: 0.8972398709051788
            name: Precision Weighted
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDRkMDAwN2ViNGE4OWZhZWUyYWUxNWM2NDM1ODE3MGNkN2NjNzY3NjU5YzU1YzAyMDE2MDQ2YjEyY2IxNjJhNyIsInZlcnNpb24iOjF9.4ezCcJOFrjn4J3-GW3FDapCVzOk9rvl2u-Hhtuae2JdUQwksT9eeMRm2532el4q6wRbFIzZ2hPcPdwYEyLZbCA
          - type: recall
            value: 0.8914608843537415
            name: Recall Macro
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWI5M2RkMzQ2ODdjZmU3YTRmZjZmNzFkNzIwMGE4ZGZiZWE2ZjA2N2Y5NWI2NjJmZmI4MjUzODY0NjZkZDM0OSIsInZlcnNpb24iOjF9.2dlij3z_6tRc8_UW-bMcflibboU25wQqP-zIaMAJuI-xmQmYhYkWM1RRxcxITj5TGSrROGfOUKYIA7Xqt_1nBw
          - type: recall
            value: 0.8928571428571429
            name: Recall Micro
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGE0Yzc1MDljZjhlMmQ3ODMzMmZjYmQxYmUzOWNjM2I0MzIwNTNkM2M0ZmEzYzE3YTgxMGJkMDEyNjY0ZGM2MyIsInZlcnNpb24iOjF9.laI8vntC4coo_DhE46nNe-DHpeNlC9VKxqO-vp7Qmn6UknL1BfiHMAdAfbHE8AYap9AZ82MIWN5pxghrRNcxDg
          - type: recall
            value: 0.8928571428571429
            name: Recall Weighted
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWY0MmUyMDUxYjMzYTQyNGM1ZmYyOWQ0OTI2ODk1ZTFiZmRkYTU3OTFlN2M2ZjcyMzQwYjA0MTE0OTUzMWI0NSIsInZlcnNpb24iOjF9.LbXSrvdULHxq5EzSLLCgla7-ZOBX5qtqr5MSdeRRsP2Bv0VZ91AhmN-ko8YM54_8Grs6hzOrDhDYA8KQfqBfCg
          - type: f1
            value: 0.892544821273258
            name: F1 Macro
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2U5NThhNjQxNWE4MzFkZmRiYWNkMzY5NTMzOGJiMmNkMDM1NWFiNzZmNTI2MDc0NWVkZjMyNDM1MmUxNjJlNSIsInZlcnNpb24iOjF9.koeCiZOOAkASs9W8013N3DYysLnkxfnpcjHHEvwD5hnFXczRzgnmKVJ5WN8pKA13jeemmdxjPnNS8itbzVMDCw
          - type: f1
            value: 0.8928571428571429
            name: F1 Micro
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTc1OTVlNDQyZTM1OTg2NjBmZTdkOWM0YzQxNDIyMTQzZmMwNTY4MWIwYzJkYmRhODU2YjQ3Yzg3N2I4ODdjYiIsInZlcnNpb24iOjF9.apLx2WthXu6hDi3NW-jOlwEQlqWw9TJYUYnu8fD0uZwmd4SOep3F9DWydroDNCkKZPawooRz2Fsr0lo9DW3mAg
          - type: f1
            value: 0.8924168605019522
            name: F1 Weighted
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWNiMzBhYzM3N2Q4NjYwZjkxNjQyYTRiZmU1MTAyMDhmMjRiOTc1ZjYwMzE2NjY5NzZlMTllNWFmNmQ1YjM2ZSIsInZlcnNpb24iOjF9.VX8tiKQHyI9NUm8FLJSSi-02pGgtGoO5tFFbw-Cwhx_IPo68NKZqENYdaZ9RA7T5ezHOHWxvzPXQM__fYcu0CQ
          - type: loss
            value: 0.479541540145874
            name: loss
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDQxYzdlYTU1NGIyY2E5ODNkMGU0MzgxMDljMTE3NzE2MDcxMTExZmI0ZjQ0MTZjZDMyMzQxYmIyODg0Y2U2ZSIsInZlcnNpb24iOjF9.r88Ba2B3tj3DHxDgBDRM0_33X8nPxN3zqEhGb1ZesA9qerEGoRkP7bqBhj5YDFS1jIIrVOiIt98UX6s7vnEYAg

Vision Transformer fine-tuned on Matthijs/snacks dataset

Vision Transformer (ViT) model pre-trained on ImageNet-21k and fine-tuned on Matthijs/snacks for 5 epochs using various data augmentation transformations from torchvision.

The model achieves a 94.97% and 94.43% accuracy on the validation and test set, respectively.

Data augmentation pipeline

The code block below shows the various transformations applied during pre-processing to augment the original dataset. The augmented images where generated on-the-fly with the set_transform method.

from transformers import ViTFeatureExtractor
from torchvision.transforms import (
    Compose,
    Normalize,
    Resize,
    RandomResizedCrop,
    RandomHorizontalFlip,
    RandomAdjustSharpness,
    ToTensor
)

checkpoint = 'google/vit-base-patch16-224-in21k'
feature_extractor = ViTFeatureExtractor.from_pretrained(checkpoint)

# transformations on the training set
train_aug_transforms = Compose([
    RandomResizedCrop(size=feature_extractor.size),
    RandomHorizontalFlip(p=0.5),
    RandomAdjustSharpness(sharpness_factor=5, p=0.5),
    ToTensor(),
    Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std),
])

# transformations on the validation/test set
valid_aug_transforms = Compose([
    Resize(size=(feature_extractor.size, feature_extractor.size)),
    ToTensor(),
    Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std),
])