matrixportal's picture
Upload README.md with huggingface_hub
72c4ce0 verified
---
license: gemma
library_name: transformers
pipeline_tag: text-generation
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging
Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
tags:
- conversational
- llama-cpp
- gguf-my-repo
base_model: WiroAI/gemma-2-9b-it-tr
language:
- tr
model-index:
- name: gemma-2-9b-it-tr
results:
- task:
type: multiple-choice
dataset:
name: MMLU_TR_V0.2
type: multiple-choice
metrics:
- type: 5-shot
value: 0.5982
name: 5-shot
verified: false
- type: 0-shot
value: 0.4991
name: 0-shot
verified: false
- type: 25-shot
value: 0.5367
name: 25-shot
verified: false
- type: 10-shot
value: 0.5701
name: 10-shot
verified: false
- type: 5-shot
value: 0.6682
name: 5-shot
verified: false
- type: 5-shot
value: 0.6058
name: 5-shot
verified: false
---
# matrixportal/gemma-2-9b-it-tr-Q4_0-GGUF
This model was converted to GGUF format from [`WiroAI/gemma-2-9b-it-tr`](https://huggingface.co/WiroAI/gemma-2-9b-it-tr) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/WiroAI/gemma-2-9b-it-tr) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo matrixportal/gemma-2-9b-it-tr-Q4_0-GGUF --hf-file gemma-2-9b-it-tr-q4_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo matrixportal/gemma-2-9b-it-tr-Q4_0-GGUF --hf-file gemma-2-9b-it-tr-q4_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo matrixportal/gemma-2-9b-it-tr-Q4_0-GGUF --hf-file gemma-2-9b-it-tr-q4_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo matrixportal/gemma-2-9b-it-tr-Q4_0-GGUF --hf-file gemma-2-9b-it-tr-q4_0.gguf -c 2048
```