|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- kinokokoro/ichikara-instruction-003 |
|
language: |
|
- ja |
|
base_model: |
|
- llm-jp/llm-jp-3-13b |
|
library_name: transformers |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
--- |
|
|
|
# Sample Use |
|
```python |
|
MODEL_DIR = os.path.join("model_dir") |
|
|
|
def load_model(): |
|
print("モデルとトークナイザーを読み込み中...") |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_DIR, |
|
torch_dtype=torch.float16, |
|
device_map={"": 0}, # 明示的にGPU割り当て |
|
use_cache=True, # キャッシュを有効化 |
|
).to('cuda') # 明示的にGPUへ |
|
|
|
model.eval() # 評価モード |
|
return model, tokenizer |
|
|
|
def generate_predictions(model, tokenizer, input_file, output_file): |
|
# バッチ処理の追加 |
|
BATCH_SIZE = 8 # バッチサイズの設定 |
|
|
|
print(f"入力ファイルを読み込み中: {input_file}") |
|
tasks = [] |
|
with open(input_file, 'r', encoding='utf-8') as f: |
|
for line in f: |
|
tasks.append(json.loads(line)) |
|
|
|
results = [] |
|
print("推論を実行中...") |
|
|
|
# バッチ処理 |
|
for i in tqdm(range(0, len(tasks), BATCH_SIZE)): |
|
batch_tasks = tasks[i:i + BATCH_SIZE] |
|
prompts = [f"入力: {task['input']}\n出力: " for task in batch_tasks] |
|
|
|
# バッチでの推論 |
|
inputs = tokenizer( |
|
prompts, |
|
return_tensors="pt", |
|
padding=True, |
|
truncation=True, |
|
max_length=512 |
|
).to('cuda') |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
inputs.input_ids, |
|
max_length=512, |
|
temperature=0.7, |
|
do_sample=False, |
|
repetition_penalty=1.2, |
|
pad_token_id=tokenizer.pad_token_id, |
|
num_return_sequences=1, |
|
early_stopping=True, # 早期停止を有効化 |
|
use_cache=True # キャッシュを使用 |
|
) |
|
|
|
# バッチ出力の処理 |
|
for j, output in enumerate(outputs): |
|
generated_text = tokenizer.decode(output, skip_special_tokens=True) |
|
output_text = generated_text.split("出力: ")[-1].strip() |
|
|
|
results.append({ |
|
"task_id": batch_tasks[j]["task_id"], |
|
"output": output_text |
|
}) |
|
|
|
print(f"結果を保存中: {output_file}") |
|
with open(output_file, 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |
|
``` |