Translation
jwang214's picture
Update README.md
c7f2297 verified
|
raw
history blame
2.6 kB
metadata
pipeline_tag: translation
language:
  - multilingual
  - en
  - am
  - ar
  - so
  - sw
  - pt
  - af
  - fr
  - zu
  - mg
  - ha
  - sn
  - arz
  - ny
  - ig
  - xh
  - yo
  - st
  - rw
  - tn
  - ti
  - ts
  - om
  - run
  - nso
  - ee
  - ln
  - tw
  - pcm
  - gaa
  - loz
  - lg
  - guw
  - bem
  - efi
  - lue
  - lua
  - toi
  - ve
  - tum
  - tll
  - iso
  - kqn
  - zne
  - umb
  - mos
  - tiv
  - lu
  - ff
  - kwy
  - bci
  - rnd
  - luo
  - wal
  - ss
  - lun
  - wo
  - nyk
  - kj
  - ki
  - fon
  - bm
  - cjk
  - din
  - dyu
  - kab
  - kam
  - kbp
  - kr
  - kmb
  - kg
  - nus
  - sg
  - taq
  - tzm
  - nqo
license: apache-2.0

This is an improved version of AfriCOMET-QE-STL (quality estimation single task) evaluation model: It receives a source sentence, and a translation, and returns a score that reflects the quality of the translation compared to the source. Different from the original AfriCOMET-QE-STL, this QE model is based on an improved African enhanced encoder, afro-xlmr-large-76L, which leads better performance on quality estimation of African-related machine translation, verified in WMT 2024 Metrics Shared Task.

Paper

AfriMTE and AfriCOMET: Empowering COMET to Embrace Under-resourced African Languages (Wang et al., arXiv 2023)

License

Apache-2.0

Usage (AfriCOMET)

Using this model requires unbabel-comet to be installed:

pip install --upgrade pip  # ensures that pip is current 
pip install unbabel-comet

Then you can use it through comet CLI:

comet-score -s {source-inputs}.txt -t {translation-outputs}.txt --model masakhane/africomet-qe-stl

Or using Python:

from comet import download_model, load_from_checkpoint

model_path = download_model("masakhane/africomet-qe-stl")
model = load_from_checkpoint(model_path)
data = [
    {
        "src": "Nadal sàkọọ́lẹ̀ ìforígbárí o ní àmì méje sóódo pẹ̀lú ilẹ̀ Canada.",
        "mt": "Nadal's head to head record against the Canadian is 7–2.",
    },
    {
        "src": "Laipe yi o padanu si Raoniki ni ere Sisi Brisbeni.",
        "mt": "He recently lost against Raonic in the Brisbane Open.",
    }
]
model_output = model.predict(data, batch_size=8, gpus=1)
print (model_output)

Intended uses

Our model is intented to be used for MT quality estimation.

Given a source sentence and a translation outputs a single score between 0 and 1 where 1 represents a perfect translation.