indobart-v2-finetuned-indosum

This model is a fine-tuned version of t5-small on the indosum dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4003
  • Rouge1: 21.1743
  • Rouge2: 16.867
  • Rougel: 20.9061
  • Rougelsum: 21.0473
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.4276 1.0 1189 0.4118 21.0508 16.7363 20.7771 20.919 19.0
0.4268 2.0 2378 0.4060 21.1694 16.852 20.891 21.0278 19.0
0.4077 3.0 3567 0.4021 21.1523 16.8553 20.8928 21.0273 19.0
0.406 4.0 4756 0.4006 21.1743 16.867 20.9061 21.0473 19.0
0.4158 5.0 5945 0.4003 21.1743 16.867 20.9061 21.0473 19.0

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
1
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results