swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3026
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.0940 0.25
No log 2.0 2 0.9836 0.25
No log 3.0 3 0.7624 0.25
No log 4.0 4 0.6527 0.5
No log 5.0 5 0.5697 0.75
No log 6.0 6 0.5167 1.0
No log 7.0 7 0.4898 0.75
No log 8.0 8 0.4572 0.75
No log 9.0 9 0.4286 0.75
0.299 10.0 10 0.3976 0.75
0.299 11.0 11 0.3678 1.0
0.299 12.0 12 0.3531 1.0
0.299 13.0 13 0.3384 1.0
0.299 14.0 14 0.3264 1.0
0.299 15.0 15 0.3188 1.0
0.299 16.0 16 0.3114 1.0
0.299 17.0 17 0.3083 1.0
0.299 18.0 18 0.3071 1.0
0.299 19.0 19 0.3041 1.0
0.2051 20.0 20 0.3026 1.0

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
31
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results