martimfasantos's picture
End of training
0bf409d verified
metadata
license: apache-2.0
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
tags:
  - xcomet_xl_xxl
  - generated_from_trainer
model-index:
  - name: cpo-xcomet-xl_xxl-inc7b-10p-shuff-5e-7-full-tiny2
    results: []

cpo-xcomet-xl_xxl-inc7b-10p-shuff-5e-7-full-tiny2

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the Unbabel/TowerAligned-v0.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5858
  • Nll Loss: 0.9632
  • Logps/best: -93.9459
  • Rewards/chosen: -9.3946
  • Rewards/rejected: -8.9636
  • Rewards/accuracies: 0.4740
  • Rewards/margins: -0.4310
  • Logps/rejected: -89.6356
  • Logps/chosen: -93.9459
  • Logits/rejected: -1.8013
  • Logits/chosen: -1.9355

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 1
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Nll Loss Logps/best Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
3.1908 0.5317 500 2.7136 1.0203 -99.1796 -9.9180 -9.3876 0.4600 -0.5304 -93.8759 -99.1796 -1.8188 -1.9550
2.7347 1.0635 1000 2.6365 0.9846 -95.9023 -9.5902 -9.1174 0.4720 -0.4728 -91.1739 -95.9023 -1.8087 -1.9438
2.5644 1.5952 1500 2.6035 0.9703 -94.5918 -9.4592 -9.0135 0.4680 -0.4456 -90.1355 -94.5918 -1.8043 -1.9388
2.6495 2.1270 2000 2.5883 0.9646 -94.0702 -9.4070 -8.9746 0.4720 -0.4324 -89.7462 -94.0702 -1.8018 -1.9361
2.4747 2.6587 2500 2.5858 0.9632 -93.9459 -9.3946 -8.9636 0.4740 -0.4310 -89.6356 -93.9459 -1.8013 -1.9355

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.19.1