marrodion's picture
Add new SentenceTransformer model.
04ebcc5 verified
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:10K<n<100K
- loss:CosineSimilarityLoss
base_model: sentence-transformers/all-MiniLM-L12-v2
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: How does ZBo do it
sentences:
- That s how you do it RYU
- Calum you need to follow me ok
- fricken calum follow me im upset
- source_sentence: Judi was a crazy mf
sentences:
- ZBo is a baaad man
- quel surprise it s the Canucks
- nope Id buy Candice s and I will
- source_sentence: ZBo is a baaad man
sentences:
- Jeff Green is a BAAAAAAAAADDDDD man
- Wow RIP Chris from Kriss Kross
- Vick 32 and shady is 24
- source_sentence: OH GOD SING IT VEDO
sentences:
- Wow wow wow Vedo just killed it
- It s over on his facebook page
- Why do I get amber alerts tho
- source_sentence: ZBo is in top form
sentences:
- Miley Cyrus is over the top
- Hiller flashing the leather eh
- Im tryin to get to Chicago May 10th
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: semeval 15 dev
type: semeval-15-dev
metrics:
- type: pearson_cosine
value: 0.6231334838158124
name: Pearson Cosine
- type: spearman_cosine
value: 0.5854181889364861
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6182213570910924
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.583565039468049
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6202960321095145
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.5854180844045054
name: Spearman Euclidean
- type: pearson_dot
value: 0.6231334928761973
name: Pearson Dot
- type: spearman_dot
value: 0.5854180353346093
name: Spearman Dot
- type: pearson_max
value: 0.6231334928761973
name: Pearson Max
- type: spearman_max
value: 0.5854181889364861
name: Spearman Max
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision a05860a77cef7b37e0048a7864658139bc18a854 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("marrodion/minilm-l12-v2-simple")
# Run inference
sentences = [
'ZBo is in top form',
'Miley Cyrus is over the top',
'Hiller flashing the leather eh',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `semeval-15-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6231 |
| **spearman_cosine** | **0.5854** |
| pearson_manhattan | 0.6182 |
| spearman_manhattan | 0.5836 |
| pearson_euclidean | 0.6203 |
| spearman_euclidean | 0.5854 |
| pearson_dot | 0.6231 |
| spearman_dot | 0.5854 |
| pearson_max | 0.6231 |
| spearman_max | 0.5854 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 13,063 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 7 tokens</li><li>mean: 11.16 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.31 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:------------------------------------------------------|:-------------------------------------------------------------------|:-----------------|
| <code>EJ Manuel the 1st QB to go in this draft</code> | <code>But my bro from the 757 EJ Manuel is the 1st QB gone</code> | <code>1.0</code> |
| <code>EJ Manuel the 1st QB to go in this draft</code> | <code>Can believe EJ Manuel went as the 1st QB in the draft</code> | <code>1.0</code> |
| <code>EJ Manuel the 1st QB to go in this draft</code> | <code>EJ MANUEL IS THE 1ST QB what</code> | <code>0.6</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 4,727 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 7 tokens</li><li>mean: 10.04 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.22 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:---------------------------------------------------------------|:------------------------------------------------------------------|:-----------------|
| <code>A Walk to Remember is the definition of true love</code> | <code>A Walk to Remember is on and Im in town and Im upset</code> | <code>0.2</code> |
| <code>A Walk to Remember is the definition of true love</code> | <code>A Walk to Remember is the cutest thing</code> | <code>0.6</code> |
| <code>A Walk to Remember is the definition of true love</code> | <code>A walk to remember is on ABC family youre welcome</code> | <code>0.2</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3.0
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | semeval-15-dev_spearman_cosine |
|:----------:|:--------:|:-------------:|:---------:|:------------------------------:|
| 0.1837 | 300 | 0.0814 | 0.0718 | 0.5815 |
| 0.3674 | 600 | 0.0567 | 0.0758 | 0.5458 |
| 0.5511 | 900 | 0.0566 | 0.0759 | 0.5712 |
| 0.7348 | 1200 | 0.0499 | 0.0748 | 0.5751 |
| 0.9186 | 1500 | 0.0477 | 0.0771 | 0.5606 |
| 1.1023 | 1800 | 0.0391 | 0.0762 | 0.5605 |
| 1.2860 | 2100 | 0.0304 | 0.0738 | 0.5792 |
| 1.4697 | 2400 | 0.0293 | 0.0741 | 0.5757 |
| **1.6534** | **2700** | **0.0317** | **0.072** | **0.5967** |
| 1.8371 | 3000 | 0.029 | 0.0764 | 0.5640 |
| 2.0208 | 3300 | 0.0278 | 0.0757 | 0.5674 |
| 2.2045 | 3600 | 0.0186 | 0.0750 | 0.5723 |
| 2.3882 | 3900 | 0.0169 | 0.0719 | 0.5864 |
| 2.5720 | 4200 | 0.0177 | 0.0718 | 0.5905 |
| 2.7557 | 4500 | 0.0178 | 0.0719 | 0.5888 |
| 2.9394 | 4800 | 0.0165 | 0.0725 | 0.5854 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->