|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:10K<n<100K |
|
- loss:CosineSimilarityLoss |
|
base_model: sentence-transformers/all-MiniLM-L12-v2 |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: How does ZBo do it |
|
sentences: |
|
- That s how you do it RYU |
|
- Calum you need to follow me ok |
|
- fricken calum follow me im upset |
|
- source_sentence: Judi was a crazy mf |
|
sentences: |
|
- ZBo is a baaad man |
|
- quel surprise it s the Canucks |
|
- nope Id buy Candice s and I will |
|
- source_sentence: ZBo is a baaad man |
|
sentences: |
|
- Jeff Green is a BAAAAAAAAADDDDD man |
|
- Wow RIP Chris from Kriss Kross |
|
- Vick 32 and shady is 24 |
|
- source_sentence: OH GOD SING IT VEDO |
|
sentences: |
|
- Wow wow wow Vedo just killed it |
|
- It s over on his facebook page |
|
- Why do I get amber alerts tho |
|
- source_sentence: ZBo is in top form |
|
sentences: |
|
- Miley Cyrus is over the top |
|
- Hiller flashing the leather eh |
|
- Im tryin to get to Chicago May 10th |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: semeval 15 dev |
|
type: semeval-15-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6231334838158124 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.5854181889364861 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6182213570910924 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.583565039468049 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6202960321095145 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.5854180844045054 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6231334928761973 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5854180353346093 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6231334928761973 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.5854181889364861 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision a05860a77cef7b37e0048a7864658139bc18a854 --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("marrodion/minilm-l12-v2-simple") |
|
# Run inference |
|
sentences = [ |
|
'ZBo is in top form', |
|
'Miley Cyrus is over the top', |
|
'Hiller flashing the leather eh', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `semeval-15-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6231 | |
|
| **spearman_cosine** | **0.5854** | |
|
| pearson_manhattan | 0.6182 | |
|
| spearman_manhattan | 0.5836 | |
|
| pearson_euclidean | 0.6203 | |
|
| spearman_euclidean | 0.5854 | |
|
| pearson_dot | 0.6231 | |
|
| spearman_dot | 0.5854 | |
|
| pearson_max | 0.6231 | |
|
| spearman_max | 0.5854 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 13,063 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 11.16 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.31 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:------------------------------------------------------|:-------------------------------------------------------------------|:-----------------| |
|
| <code>EJ Manuel the 1st QB to go in this draft</code> | <code>But my bro from the 757 EJ Manuel is the 1st QB gone</code> | <code>1.0</code> | |
|
| <code>EJ Manuel the 1st QB to go in this draft</code> | <code>Can believe EJ Manuel went as the 1st QB in the draft</code> | <code>1.0</code> | |
|
| <code>EJ Manuel the 1st QB to go in this draft</code> | <code>EJ MANUEL IS THE 1ST QB what</code> | <code>0.6</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 4,727 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 10.04 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.22 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:---------------------------------------------------------------|:------------------------------------------------------------------|:-----------------| |
|
| <code>A Walk to Remember is the definition of true love</code> | <code>A Walk to Remember is on and Im in town and Im upset</code> | <code>0.2</code> | |
|
| <code>A Walk to Remember is the definition of true love</code> | <code>A Walk to Remember is the cutest thing</code> | <code>0.6</code> | |
|
| <code>A Walk to Remember is the definition of true love</code> | <code>A walk to remember is on ABC family youre welcome</code> | <code>0.2</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `warmup_ratio`: 0.1 |
|
- `load_best_model_at_end`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 8 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3.0 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | semeval-15-dev_spearman_cosine | |
|
|:----------:|:--------:|:-------------:|:---------:|:------------------------------:| |
|
| 0.1837 | 300 | 0.0814 | 0.0718 | 0.5815 | |
|
| 0.3674 | 600 | 0.0567 | 0.0758 | 0.5458 | |
|
| 0.5511 | 900 | 0.0566 | 0.0759 | 0.5712 | |
|
| 0.7348 | 1200 | 0.0499 | 0.0748 | 0.5751 | |
|
| 0.9186 | 1500 | 0.0477 | 0.0771 | 0.5606 | |
|
| 1.1023 | 1800 | 0.0391 | 0.0762 | 0.5605 | |
|
| 1.2860 | 2100 | 0.0304 | 0.0738 | 0.5792 | |
|
| 1.4697 | 2400 | 0.0293 | 0.0741 | 0.5757 | |
|
| **1.6534** | **2700** | **0.0317** | **0.072** | **0.5967** | |
|
| 1.8371 | 3000 | 0.029 | 0.0764 | 0.5640 | |
|
| 2.0208 | 3300 | 0.0278 | 0.0757 | 0.5674 | |
|
| 2.2045 | 3600 | 0.0186 | 0.0750 | 0.5723 | |
|
| 2.3882 | 3900 | 0.0169 | 0.0719 | 0.5864 | |
|
| 2.5720 | 4200 | 0.0177 | 0.0718 | 0.5905 | |
|
| 2.7557 | 4500 | 0.0178 | 0.0719 | 0.5888 | |
|
| 2.9394 | 4800 | 0.0165 | 0.0725 | 0.5854 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.41.1 |
|
- PyTorch: 2.3.0 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |